2 Way Anova Calculator

2-Way ANOVA Calculator (2×2 Design) body { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; line-height: 1.6; color: #333; max-width: 1200px; margin: 0 auto; padding: 20px; background-color: #f9f9f9; } .calculator-wrapper { background: #fff; padding: 30px; border-radius: 8px; box-shadow: 0 4px 15px rgba(0,0,0,0.1); margin-bottom: 40px; } .calc-header { text-align: center; margin-bottom: 25px; border-bottom: 2px solid #0073e6; padding-bottom: 15px; } .calc-header h2 { margin: 0; color: #0073e6; } .input-grid { display: grid; grid-template-columns: 150px 1fr 1fr; gap: 15px; margin-bottom: 20px; align-items: center; } .input-header { font-weight: bold; text-align: center; background: #f0f4f8; padding: 10px; border-radius: 4px; } .input-label { font-weight: bold; padding: 10px; } textarea { width: 100%; height: 100px; padding: 10px; border: 1px solid #ccc; border-radius: 4px; font-family: monospace; resize: vertical; box-sizing: border-box; } textarea:focus { border-color: #0073e6; outline: none; } .controls { display: flex; gap: 20px; align-items: center; margin-bottom: 20px; justify-content: center; background: #f0f4f8; padding: 15px; border-radius: 4px; } .control-group { display: flex; flex-direction: column; } select { padding: 8px; border-radius: 4px; border: 1px solid #ccc; } button.calc-btn { background-color: #0073e6; color: white; border: none; padding: 12px 30px; font-size: 16px; border-radius: 4px; cursor: pointer; transition: background 0.3s; font-weight: bold; } button.calc-btn:hover { background-color: #005bb5; } #error-msg { color: #d32f2f; text-align: center; font-weight: bold; margin-bottom: 10px; display: none; } #result-section { display: none; margin-top: 30px; border-top: 1px solid #eee; padding-top: 20px; } table.anova-table { width: 100%; border-collapse: collapse; margin-top: 15px; } table.anova-table th, table.anova-table td { border: 1px solid #ddd; padding: 12px; text-align: right; } table.anova-table th { background-color: #f0f4f8; text-align: center; color: #333; } table.anova-table td:first-child { text-align: left; font-weight: bold; } .significant { color: #2e7d32; font-weight: bold; } .not-significant { color: #d32f2f; } .content-section { background: #fff; padding: 30px; border-radius: 8px; box-shadow: 0 2px 5px rgba(0,0,0,0.05); } h3 { color: #0073e6; margin-top: 25px; } p { margin-bottom: 15px; } ul { margin-bottom: 15px; } code { background: #f4f4f4; padding: 2px 5px; border-radius: 3px; } @media (max-width: 768px) { .input-grid { grid-template-columns: 1fr; } .input-header { display: none; } }

2-Way ANOVA Calculator (2×2 Design)

Analyze the effect of two independent factors and their interaction.

0.01 (1%) 0.05 (5%) 0.10 (10%)
2 3 4

Enter numerical data separated by commas, spaces, or new lines.

Factor B (Level 1)
Factor B (Level 2)
Factor A (Level 1)
Factor A (Level 2)

ANOVA Summary Table

Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F-Statistic P-Value

Understanding the Two-Way ANOVA Calculator

This 2-Way ANOVA (Analysis of Variance) calculator is designed for statistical analysis of a 2×2 factorial design. It helps researchers and students determine if there is a statistically significant difference between the means of two independent factors (Factor A and Factor B) and if there is an interaction effect between them.

What is Two-Way ANOVA?

A Two-Way ANOVA is an extension of the One-Way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The "2-way" aspect calculates three distinct effects:

  • Main Effect of Factor A: Does the first factor (rows) significantly affect the outcome?
  • Main Effect of Factor B: Does the second factor (columns) significantly affect the outcome?
  • Interaction Effect (A × B): Does the effect of one factor depend on the level of the other factor?

How to Use This Calculator

  1. Select Significance Level (α): Choose your alpha (usually 0.05), which sets the threshold for statistical significance.
  2. Enter Data: Input your raw data points into the four quadrants corresponding to the combinations of Factor A and Factor B levels. Separate numbers using commas, spaces, or new lines.
  3. Requirement: For the most accurate standard calculation, this tool assumes a balanced design, meaning the number of replicates (data points) in each cell should be equal.

Interpreting the Results

The output table displays the standard ANOVA components:

  • SS (Sum of Squares): Represents the total variation attributed to each source.
  • df (Degrees of Freedom): Calculated based on the number of levels and total sample size.
  • MS (Mean Square): The SS divided by the df. This represents the variance estimates.
  • F-Statistic: The ratio of the factor MS to the Error MS. A higher F-value indicates a stronger effect.
  • P-Value: The probability that the observed results occurred by chance. If P < α, the effect is statistically significant.

Formulae Used

The calculations follow the standard partitioning of variance:

SSTotal = SSFactorA + SSFactorB + SSInteraction + SSError

The F-statistic is calculated as F = MSSource / MSError.

// Utility: Gamma function for P-value calculation (Lanczos approximation) var logGamma = function(z) { var c = [76.18009172947146, -86.50532032941677, 24.01409824083091, -1.231739572450155, 0.1208650973866179e-2, -0.5395239384953e-5]; var x = z; var y = z; var tmp = x + 5.5; tmp -= (x + 0.5) * Math.log(tmp); var ser = 1.000000000190015; for (var j = 0; j < 6; j++) ser += c[j] / ++y; return -tmp + Math.log(2.5066282746310005 * ser / x); }; // Utility: Regularized Incomplete Beta Function (for F-distribution CDF) var betainc = function(x, a, b) { var bt = (x === 0 || x === 1) ? 0 : Math.exp(logGamma(a + b) – logGamma(a) – logGamma(b) + a * Math.log(x) + b * Math.log(1 – x)); if (x < (a + 1) / (a + b + 2)) { return bt * betacf(x, a, b) / a; } else { return 1 – bt * betacf(1 – x, b, a) / b; } }; // Utility: Continued Fraction for Beta var betacf = function(x, a, b) { var fpmin = 1e-30; var m2 = 0; var aa = 0; var del = 0; var h = 1 – a * (a + b) * x / (a + 1); if (Math.abs(h) < fpmin) h = fpmin; var c = 1 / fpmin; var d = 1 / h; h = d; var qab = a + b; var qap = a + 1; var qam = a – 1; for (var m = 1; m <= 100; m++) { m2 = 2 * m; aa = m * (b – m) * x / ((qam + m2) * (a + m2)); d = 1 + aa * d; if (Math.abs(d) < fpmin) d = fpmin; c = 1 + aa / c; if (Math.abs(c) < fpmin) c = fpmin; d = 1 / d; h *= d * c; aa = -(a + m) * (qab + m) * x / ((a + m2) * (qap + m2)); d = 1 + aa * d; if (Math.abs(d) < fpmin) d = fpmin; c = 1 + aa / c; if (Math.abs(c) < fpmin) c = fpmin; d = 1 / d; del = d * c; h *= del; if (Math.abs(del – 1.0) < 3e-7) break; } return h; }; // Utility: Calculate P-value from F, df1, df2 var calculatePValue = function(f, df1, df2) { if (f <= 0) return 1.0; var x = df2 / (df2 + df1 * f); return betainc(x, df2 / 2, df1 / 2); }; // Main Calculator Logic function calculateAnova() { var errorDiv = document.getElementById('error-msg'); var resultSection = document.getElementById('result-section'); var anovaBody = document.getElementById('anova-body'); var conclusionText = document.getElementById('conclusion-text'); errorDiv.style.display = 'none'; errorDiv.innerHTML = ''; resultSection.style.display = 'none'; // 1. Get Inputs var raw_a1b1 = document.getElementById('cell_a1b1').value; var raw_a1b2 = document.getElementById('cell_a1b2').value; var raw_a2b1 = document.getElementById('cell_a2b1').value; var raw_a2b2 = document.getElementById('cell_a2b2').value; // 2. Parse Data var parseData = function(str) { return str.split(/[\s,]+/).filter(function(n) { return n !== '' && !isNaN(n); }).map(Number); }; var d_a1b1 = parseData(raw_a1b1); var d_a1b2 = parseData(raw_a1b2); var d_a2b1 = parseData(raw_a2b1); var d_a2b2 = parseData(raw_a2b2); // 3. Validate if (d_a1b1.length === 0 || d_a1b2.length === 0 || d_a2b1.length === 0 || d_a2b2.length === 0) { errorDiv.style.display = 'block'; errorDiv.innerHTML = "Please enter valid numerical data in all four fields."; return; } // Check for balanced design (recommended for simple 2-way) var n = d_a1b1.length; if (d_a1b2.length !== n || d_a2b1.length !== n || d_a2b2.length !== n) { errorDiv.style.display = 'block'; errorDiv.innerHTML = "Warning: Unbalanced design detected (unequal sample sizes).This calculator uses standard formulas which assume equal sample sizes (Balanced Design) for interaction calculation accuracy. Results may be approximate."; } // 4. Calculations var sum = function(arr) { return arr.reduce(function(a, b) { return a + b; }, 0); }; var sumSq = function(arr) { return arr.reduce(function(a, b) { return a + (b * b); }, 0); }; // Group Sums and Counts var s_a1b1 = sum(d_a1b1), n_a1b1 = d_a1b1.length; var s_a1b2 = sum(d_a1b2), n_a1b2 = d_a1b2.length; var s_a2b1 = sum(d_a2b1), n_a2b1 = d_a2b1.length; var s_a2b2 = sum(d_a2b2), n_a2b2 = d_a2b2.length; // Total var allData = [].concat(d_a1b1, d_a1b2, d_a2b1, d_a2b2); var N_total = allData.length; var GrandTotal = sum(allData); var CF = (GrandTotal * GrandTotal) / N_total; var SS_Total = sumSq(allData) – CF; // Factor A (Rows) Calculations var Row1Total = s_a1b1 + s_a1b2; var Row2Total = s_a2b1 + s_a2b2; var n_row1 = n_a1b1 + n_a1b2; var n_row2 = n_a2b1 + n_a2b2; var SS_A = ((Row1Total * Row1Total) / n_row1 + (Row2Total * Row2Total) / n_row2) – CF; // Factor B (Cols) Calculations var Col1Total = s_a1b1 + s_a2b1; var Col2Total = s_a1b2 + s_a2b2; var n_col1 = n_a1b1 + n_a2b1; var n_col2 = n_a1b2 + n_a2b2; var SS_B = ((Col1Total * Col1Total) / n_col1 + (Col2Total * Col2Total) / n_col2) – CF; // Subtotal (Cells) var SS_Cells = ((s_a1b1*s_a1b1)/n_a1b1 + (s_a1b2*s_a1b2)/n_a1b2 + (s_a2b1*s_a2b1)/n_a2b1 + (s_a2b2*s_a2b2)/n_a2b2) – CF; // Interaction (AxB) var SS_AxB = SS_Cells – SS_A – SS_B; // Error (Within) var SS_Error = SS_Total – SS_Cells; // Degrees of Freedom var a_levels = 2; // Fixed 2×2 var b_levels = 2; var df_A = a_levels – 1; var df_B = b_levels – 1; var df_AxB = df_A * df_B; var df_Total = N_total – 1; var df_Error = df_Total – df_A – df_B – df_AxB; // Mean Squares var MS_A = SS_A / df_A; var MS_B = SS_B / df_B; var MS_AxB = SS_AxB / df_AxB; var MS_Error = SS_Error / df_Error; // F-Statistics var F_A = MS_A / MS_Error; var F_B = MS_B / MS_Error; var F_AxB = MS_AxB / MS_Error; // P-Values var P_A = calculatePValue(F_A, df_A, df_Error); var P_B = calculatePValue(F_B, df_B, df_Error); var P_AxB = calculatePValue(F_AxB, df_AxB, df_Error); // Formatting var decimals = parseInt(document.getElementById('rounding').value); var alpha = parseFloat(document.getElementById('alphaLevel').value); var fmt = function(num) { return num.toFixed(decimals); }; var fmtP = function(p) { return p < 0.0001 ? "< 0.0001" : p.toFixed(decimals); }; var checkSig = function(p) { return p < alpha ? 'Yes' : 'No'; }; // Render Table var html = "; // Row A html += ''; html += 'Factor A (Rows)'; html += '' + fmt(SS_A) + ''; html += '' + df_A + ''; html += '' + fmt(MS_A) + ''; html += '' + fmt(F_A) + ''; html += '' + fmtP(P_A) + ' (' + checkSig(P_A) + ')'; html += ''; // Row B html += ''; html += 'Factor B (Columns)'; html += '' + fmt(SS_B) + ''; html += '' + df_B + ''; html += '' + fmt(MS_B) + ''; html += '' + fmt(F_B) + ''; html += '' + fmtP(P_B) + ' (' + checkSig(P_B) + ')'; html += ''; // Interaction html += ''; html += 'Interaction (A × B)'; html += '' + fmt(SS_AxB) + ''; html += '' + df_AxB + ''; html += '' + fmt(MS_AxB) + ''; html += '' + fmt(F_AxB) + ''; html += '' + fmtP(P_AxB) + ' (' + checkSig(P_AxB) + ')'; html += ''; // Error html += ''; html += 'Error (Within)'; html += '' + fmt(SS_Error) + ''; html += '' + df_Error + ''; html += '' + fmt(MS_Error) + ''; html += '–'; html += '–'; html += ''; // Total html += ''; html += 'Total'; html += '' + fmt(SS_Total) + ''; html += '' + df_Total + ''; html += '–'; html += '–'; html += '–'; html += ''; anovaBody.innerHTML = html; // Conclusion Text var txt = "

Interpretation:

"; txt += "
    "; txt += "
  • Factor A: The effect is " + (P_A < alpha ? "statistically significant" : "not significant") + ".
  • "; txt += "
  • Factor B: The effect is " + (P_B < alpha ? "statistically significant" : "not significant") + ".
  • "; txt += "
  • Interaction: The interaction effect is " + (P_AxB < alpha ? "statistically significant" : "not significant") + ".
  • "; txt += "
"; conclusionText.innerHTML = txt; resultSection.style.display = 'block'; }

Leave a Reply

Your email address will not be published. Required fields are marked *