Chebyshev Calculator

Chebyshev's Inequality Calculator

Calculate the minimum proportion of data within K standard deviations

Must be greater than 1

Alternative: Calculate K based on Specific Values

Value to determine probability of being outside the range |X – μ|

Results

Understanding Chebyshev's Theorem

Chebyshev's Theorem (or Inequality) is a fundamental principle in statistics that describes the minimum proportion of values that fall within a certain number of standard deviations from the mean for any data distribution, regardless of its shape.

The Formula

P(|X – μ| < kσ) ≥ 1 – (1 / k²)

Where:

  • k is the number of standard deviations (must be > 1).
  • μ is the population mean.
  • σ is the standard deviation.

Key Benchmarks

  • k = 2: At least 75% of data falls within 2 standard deviations.
  • k = 3: At least 88.89% of data falls within 3 standard deviations.
  • k = 4.47: At least 95% of data falls within 4.47 standard deviations.

Practical Example

Suppose a company's daily production mean is 500 units with a standard deviation of 50 units. If we want to know what percentage of days the production will be between 400 and 600 units:

  1. Calculate k: (600 – 500) / 50 = 2.
  2. Apply formula: 1 – (1 / 2²) = 1 – 0.25 = 0.75.
  3. Result: At least 75% of the time, production will fall in this range.
function calculateChebyshevByK() { var k = parseFloat(document.getElementById('k_value').value); var resultArea = document.getElementById('chebyshev-result-area'); var output = document.getElementById('chebyshev-output'); if (isNaN(k) || k <= 1) { alert("Please enter a K value greater than 1."); return; } var proportion = 1 – (1 / Math.pow(k, 2)); var percentage = (proportion * 100).toFixed(2); var maxOutside = ((1 / Math.pow(k, 2)) * 100).toFixed(2); resultArea.style.display = 'block'; output.innerHTML = 'For k = ' + k + ':' + 'Minimum percentage of data within ' + k + ' standard deviations: ' + percentage + '%' + 'Maximum percentage of data outside this range: ' + maxOutside + '%'; } function calculateChebyshevByValues() { var mean = parseFloat(document.getElementById('mean').value); var sd = parseFloat(document.getElementById('std_dev').value); var target = parseFloat(document.getElementById('target_val').value); var resultArea = document.getElementById('chebyshev-result-area'); var output = document.getElementById('chebyshev-output'); if (isNaN(mean) || isNaN(sd) || isNaN(target)) { alert("Please enter valid numbers for Mean, Std. Deviation, and Target Value."); return; } if (sd <= 0) { alert("Standard deviation must be greater than 0."); return; } var diff = Math.abs(target – mean); var k = diff / sd; if (k <= 1) { resultArea.style.display = 'block'; output.innerHTML = 'Note: The calculated K value is ' + k.toFixed(4) + '. Chebyshev\'s Inequality only provides useful bounds when K > 1. At K ≤ 1, the theorem states that 0% or more of the data is within the range, which is always true for any probability.'; return; } var proportion = 1 – (1 / Math.pow(k, 2)); var percentage = (proportion * 100).toFixed(2); var maxOutside = ((1 / Math.pow(k, 2)) * 100).toFixed(2); var lowerBound = mean – (k * sd); var upperBound = mean + (k * sd); resultArea.style.display = 'block'; output.innerHTML = 'Analysis for X = ' + target + ':' + 'Calculated K: ' + k.toFixed(4) + " + 'Data Range (|X – μ|): ' + lowerBound.toFixed(2) + ' to ' + upperBound.toFixed(2) + " + 'Minimum percentage of data within this range: ' + percentage + '%' + 'Maximum percentage of data outside this range: ' + maxOutside + '%'; }

Leave a Reply

Your email address will not be published. Required fields are marked *