Thevenin Resistance Calculator

.thevenin-header { background: #2c3e50; color: #ffffff; padding: 25px; text-align: center; } .thevenin-header h2 { margin: 0; font-size: 24px; text-transform: uppercase; letter-spacing: 1px; } .thevenin-container { padding: 30px; background: #fdfdfd; } .calc-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; margin-bottom: 25px; } .input-group { display: flex; flex-direction: column; } .input-group label { font-weight: 600; margin-bottom: 8px; color: #444; } .input-group input { padding: 12px; border: 2px solid #ddd; border-radius: 5px; font-size: 16px; transition: border-color 0.3s; } .input-group input:focus { border-color: #3498db; outline: none; } .btn-calculate { background: #3498db; color: white; border: none; padding: 15px 30px; font-size: 18px; font-weight: bold; border-radius: 5px; cursor: pointer; width: 100%; transition: background 0.3s; margin-top: 10px; } .btn-calculate:hover { background: #2980b9; } .result-box { margin-top: 30px; padding: 20px; background: #e8f4fd; border-left: 5px solid #3498db; border-radius: 4px; display: none; } .result-item { margin-bottom: 10px; font-size: 18px; } .result-item span { font-weight: bold; color: #2c3e50; } .error-msg { color: #e74c3c; font-weight: bold; margin-top: 10px; display: none; } @media (max-width: 600px) { .calc-grid { grid-template-columns: 1fr; } }

Thevenin Resistance Calculator

Analyze DC circuits using $V_{oc}$ and $I_{sc}$

Volts (V)
Amperes (A)
Please enter valid positive numbers. Current cannot be zero.
Thevenin Resistance ($R_{th}$): 0 Ω
Equivalent Conductance ($G_{th}$): 0 S
Max Power Transfer ($P_{max}$): 0 W

What is Thevenin Resistance?

In electrical engineering, Thevenin's Theorem states that any linear electrical network with voltage and current sources and only resistances can be replaced at terminals A-B by an equivalent voltage source $V_{th}$ in series connection with an equivalent resistance $R_{th}$.

The Thevenin Resistance ($R_{th}$) represents the internal resistance of the network as seen from the load terminals. Calculating this value is essential for impedance matching and understanding how a circuit will behave when connected to various loads.

How to Calculate Thevenin Resistance

There are two primary methods to find $R_{th}$:

  1. The Source Deactivation Method: Turn off all independent sources (replace voltage sources with short circuits and current sources with open circuits). Calculate the total resistance between terminals A and B.
  2. The $V_{oc}/I_{sc}$ Method: This is the method used by our calculator above.
    • Step 1: Measure the open-circuit voltage ($V_{oc}$) at the terminals.
    • Step 2: Measure the short-circuit current ($I_{sc}$) by placing a wire across the terminals.
    • Step 3: Apply Ohm's Law: $R_{th} = V_{oc} / I_{sc}$.

Example Calculation

Imagine a circuit where the measured open-circuit voltage is 24V. When you short the output terminals with an ammeter, you measure a current of 2 Amperes.

Formula: $R_{th} = V_{oc} \div I_{sc}$
Calculation: $24V \div 2A = 12 \Omega$
Result: The Thevenin Resistance is 12 Ohms.

The Importance of $R_{th}$ in Power Transfer

Thevenin resistance is critical for the Maximum Power Transfer Theorem. To extract the maximum amount of power from a network, the external load resistance ($R_L$) must be equal to the Thevenin resistance ($R_{th}$). Our calculator automatically computes $P_{max}$ using the formula: $P_{max} = V_{th}^2 / (4 \times R_{th})$.

function calculateThevenin() { var voc = document.getElementById('thev_voc').value; var isc = document.getElementById('thev_isc').value; var errorDiv = document.getElementById('thev_error'); var resultBox = document.getElementById('thev_result_box'); var v = parseFloat(voc); var i = parseFloat(isc); // Reset displays errorDiv.style.display = 'none'; resultBox.style.display = 'none'; // Validation if (isNaN(v) || isNaN(i) || i === 0) { errorDiv.style.display = 'block'; if (i === 0 && !isNaN(i)) { errorDiv.innerText = "Short-circuit current cannot be zero (Division by zero)."; } else { errorDiv.innerText = "Please enter valid numeric values for both fields."; } return; } if (v < 0 || i < 0) { errorDiv.style.display = 'block'; errorDiv.innerText = "Values should typically be positive for standard DC analysis."; return; } // Calculations var rth = v / i; var gth = 1 / rth; var pmax = (v * v) / (4 * rth); // Display Results document.getElementById('res_rth').innerText = rth.toLocaleString(undefined, {minimumFractionDigits: 2, maximumFractionDigits: 4}); document.getElementById('res_gth').innerText = gth.toLocaleString(undefined, {minimumFractionDigits: 2, maximumFractionDigits: 6}); document.getElementById('res_pmax').innerText = pmax.toLocaleString(undefined, {minimumFractionDigits: 2, maximumFractionDigits: 4}); resultBox.style.display = 'block'; }

Leave a Reply

Your email address will not be published. Required fields are marked *