Orifice Meter Calculator

Orifice Meter Flow Rate Calculator

Standard range: 0.60 to 0.65

Calculation Results

Beta Ratio (β):
Volumetric Flow Rate (m³/s):
Volumetric Flow Rate (L/min):
Mass Flow Rate (kg/s):
function calculateOrificeFlow() { var d1_mm = parseFloat(document.getElementById('pipeDiameter').value); var d2_mm = parseFloat(document.getElementById('orificeDiameter').value); var dp = parseFloat(document.getElementById('pressureDiff').value); var rho = parseFloat(document.getElementById('fluidDensity').value); var cd = parseFloat(document.getElementById('dischargeCoeff').value); if (isNaN(d1_mm) || isNaN(d2_mm) || isNaN(dp) || isNaN(rho) || isNaN(cd) || d1_mm <= 0 || d2_mm <= 0 || rho = d1_mm) { alert("Orifice diameter must be smaller than pipe diameter."); return; } // Conversions to SI units var d1 = d1_mm / 1000; // meters var d2 = d2_mm / 1000; // meters // Area Calculation var a1 = (Math.PI * Math.pow(d1, 2)) / 4; var a2 = (Math.PI * Math.pow(d2, 2)) / 4; // Beta Ratio var beta = d2 / d1; // Orifice Flow Formula: Q = Cd * A2 * sqrt( (2 * dP) / (rho * (1 – beta^4)) ) var numerator = 2 * dp; var denominator = rho * (1 – Math.pow(beta, 4)); var flowRateM3S = cd * a2 * Math.sqrt(numerator / denominator); var flowRateLMin = flowRateM3S * 1000 * 60; var massFlowRate = flowRateM3S * rho; document.getElementById('resBeta').innerText = beta.toFixed(4); document.getElementById('resFlowM3S').innerText = flowRateM3S.toFixed(6); document.getElementById('resFlowLMin').innerText = flowRateLMin.toFixed(2); document.getElementById('resMassFlow').innerText = massFlowRate.toFixed(4); document.getElementById('resultsArea').style.display = 'block'; }

Understanding Orifice Meter Calculations

An orifice meter is a type of flow meter used to measure the rate of fluid flow by creating a pressure drop across a restriction in a pipe. It operates on Bernoulli's Principle, which states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure.

The Core Formula

The volumetric flow rate (Q) is calculated using the following engineering equation:

Q = Cd × A2 × √[ (2 × ΔP) / (ρ × (1 – β4)) ]
  • Cd (Discharge Coefficient): This accounts for energy losses and the contraction of the fluid jet (vena contracta). For sharp-edged orifices, it is typically around 0.61.
  • A2: The cross-sectional area of the orifice hole.
  • ΔP: The pressure difference measured between the upstream and downstream taps.
  • ρ (Rho): The density of the fluid passing through the meter.
  • β (Beta Ratio): The ratio of the orifice diameter to the pipe diameter (d/D).

Key Application Guidelines

When using an orifice meter, engineers follow specific standards (like ISO 5167 or ASME MFC-3M) to ensure accuracy:

  1. Beta Ratio Limits: For optimal performance, the beta ratio (β) should usually fall between 0.3 and 0.75.
  2. Straight Pipe Runs: To ensure a fully developed flow profile, the meter requires several diameters of straight pipe upstream and downstream of the plate.
  3. Fluid Type: Ensure the fluid density is constant (incompressible flow) for the most accurate results using this specific calculator.

Example Calculation

If you have a 100mm pipe with a 50mm orifice (β = 0.5), a fluid density of 1000 kg/m³ (water), and a measured pressure drop of 1000 Pa, the calculator determines the velocity and volume flow. With a Cd of 0.61, the resulting flow rate would be approximately 0.0011 m³/s or 68.7 L/min.

Leave a Reply

Your email address will not be published. Required fields are marked *