This calculator helps you determine probabilities for two common scenarios in statistics: basic event probability and binomial probability.
Basic Event Probability
Use this section to calculate the probability of a single event occurring, given the number of favorable outcomes and the total number of possible outcomes.
Formula: P(Event) = (Number of Favorable Outcomes) / (Total Number of Possible Outcomes)
Binomial Probability
Use this section to calculate the probability of getting exactly 'k' successes in 'n' independent Bernoulli trials, where each trial has a probability 'p' of success.
Formula: P(X=k) = C(n, k) * p^k * (1-p)^(n-k)
Where C(n, k) is the number of combinations of 'n' items taken 'k' at a time.
.probability-calculator-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background-color: #f9f9f9;
padding: 25px;
border-radius: 10px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
max-width: 700px;
margin: 30px auto;
color: #333;
}
.probability-calculator-container h2,
.probability-calculator-container h3 {
color: #0056b3;
text-align: center;
margin-bottom: 20px;
}
.probability-calculator-container p {
line-height: 1.6;
margin-bottom: 15px;
}
.calculator-section {
background-color: #ffffff;
border: 1px solid #e0e0e0;
border-radius: 8px;
padding: 20px;
margin-bottom: 25px;
}
.calculator-section label {
display: block;
margin-bottom: 8px;
font-weight: bold;
color: #555;
}
.calculator-section input[type="number"] {
width: calc(100% – 22px);
padding: 10px;
margin-bottom: 15px;
border: 1px solid #ccc;
border-radius: 5px;
box-sizing: border-box;
font-size: 16px;
}
.calculator-section button {
background-color: #28a745;
color: white;
padding: 12px 25px;
border: none;
border-radius: 5px;
cursor: pointer;
font-size: 17px;
display: block;
width: 100%;
transition: background-color 0.3s ease;
}
.calculator-section button:hover {
background-color: #218838;
}
.calculator-result {
margin-top: 20px;
padding: 15px;
background-color: #e9f7ef;
border: 1px solid #d4edda;
border-radius: 5px;
font-size: 1.1em;
font-weight: bold;
color: #155724;
text-align: center;
}
.calculator-result.error {
background-color: #f8d7da;
border-color: #f5c6cb;
color: #721c24;
}
function calculateBasicProbability() {
var favorableOutcomes = parseFloat(document.getElementById('favorableOutcomes').value);
var totalOutcomes = parseFloat(document.getElementById('totalOutcomes').value);
var resultDiv = document.getElementById('basicProbabilityResult');
if (isNaN(favorableOutcomes) || isNaN(totalOutcomes)) {
resultDiv.innerHTML = 'Please enter valid numbers for both fields.';
resultDiv.className = 'calculator-result error';
return;
}
if (favorableOutcomes < 0 || totalOutcomes <= 0) {
resultDiv.innerHTML = 'Favorable outcomes cannot be negative. Total outcomes must be positive.';
resultDiv.className = 'calculator-result error';
return;
}
if (favorableOutcomes > totalOutcomes) {
resultDiv.innerHTML = 'Favorable outcomes cannot exceed total outcomes.';
resultDiv.className = 'calculator-result error';
return;
}
var probability = favorableOutcomes / totalOutcomes;
resultDiv.innerHTML = 'The basic probability is: ' + (probability * 100).toFixed(2) + '% (or ' + probability.toFixed(4) + ')';
resultDiv.className = 'calculator-result';
}
function factorial(n) {
if (n < 0) return NaN;
if (n === 0 || n === 1) return 1;
var res = 1;
for (var i = 2; i <= n; i++) {
res *= i;
}
return res;
}
function combinations(n, k) {
if (k n) {
return 0;
}
if (k === 0 || k === n) {
return 1;
}
if (k > n / 2) {
k = n – k;
}
var res = 1;
for (var i = 1; i <= k; i++) {
res = res * (n – i + 1) / i;
}
return res;
}
function calculateBinomialProbability() {
var n = parseFloat(document.getElementById('numTrials').value);
var k = parseFloat(document.getElementById('numSuccesses').value);
var p = parseFloat(document.getElementById('probSuccessSingle').value);
var resultDiv = document.getElementById('binomialProbabilityResult');
if (isNaN(n) || isNaN(k) || isNaN(p)) {
resultDiv.innerHTML = 'Please enter valid numbers for all fields.';
resultDiv.className = 'calculator-result error';
return;
}
if (n < 0 || k < 0 || p 1) {
resultDiv.innerHTML = 'Number of trials (n) and successes (k) must be non-negative. Probability (p) must be between 0 and 1.';
resultDiv.className = 'calculator-result error';
return;
}
if (k > n) {
resultDiv.innerHTML = 'Number of successes (k) cannot exceed the number of trials (n).';
resultDiv.className = 'calculator-result error';
return;
}
var combinations_nk = combinations(n, k);
var prob_success_k = Math.pow(p, k);
var prob_failure_n_minus_k = Math.pow((1 – p), (n – k));
var binomialProbability = combinations_nk * prob_success_k * prob_failure_n_minus_k;
resultDiv.innerHTML = 'The binomial probability P(X=' + k + ') is: ' + (binomialProbability * 100).toFixed(4) + '% (or ' + binomialProbability.toFixed(6) + ')';
resultDiv.className = 'calculator-result';
}
Understanding Probability in Statistics
Probability is a fundamental concept in statistics that quantifies the likelihood of an event occurring. It's expressed as a number between 0 and 1, where 0 indicates impossibility and 1 indicates certainty. Often, probabilities are also presented as percentages.
Basic Event Probability
The most straightforward way to calculate probability is for a simple event. If all possible outcomes of an experiment are equally likely, the probability of a specific event is the ratio of the number of favorable outcomes to the total number of possible outcomes.
Example: What is the probability of rolling a 3 on a standard six-sided die?
Number of Favorable Outcomes (rolling a 3): 1
Total Number of Possible Outcomes (rolling 1, 2, 3, 4, 5, or 6): 6
Probability = 1/6 ≈ 0.1667 or 16.67%
This calculator's "Basic Event Probability" section allows you to quickly find these simple probabilities.
Binomial Probability
Binomial probability is used when you are interested in the probability of a specific number of "successes" in a fixed number of independent trials, where each trial has only two possible outcomes (success or failure) and the probability of success remains constant for each trial. These are known as Bernoulli trials.
The conditions for a binomial distribution are:
There is a fixed number of trials (n).
Each trial has only two possible outcomes: "success" or "failure".
The probability of success (p) is the same for each trial.
The trials are independent of each other.
Example: A fair coin is flipped 10 times. What is the probability of getting exactly 7 heads?
Number of Trials (n): 10
Number of Successes (k): 7
Probability of Success on a Single Trial (p): 0.5 (since it's a fair coin)
Using the binomial probability formula, you would calculate C(10, 7) * (0.5)^7 * (0.5)^(10-7). This calculator's "Binomial Probability" section automates this calculation for you.
Why are these important?
Understanding these probability concepts is crucial in many fields: