Calculate Chi Square Online

Chi-Square Goodness-of-Fit Calculator

Use this calculator to determine the Chi-Square (χ²) statistic and degrees of freedom for a goodness-of-fit test. This test helps you compare observed frequencies from a sample to expected frequencies from a theoretical distribution.

Understanding the Chi-Square Goodness-of-Fit Test

The Chi-Square (χ²) goodness-of-fit test is a statistical hypothesis test used to determine if a sample of data matches a population with a known distribution. In simpler terms, it helps you decide if your observed data differs significantly from what you would expect to see based on a specific theory or hypothesis.

When to Use It?

  • When you have one categorical variable from a single population.
  • When you want to compare the observed frequencies of categories with the expected frequencies.
  • Examples: Testing if the distribution of M&M colors in a bag matches the manufacturer's stated proportions, or if the number of car accidents per day follows a Poisson distribution.

The Chi-Square Formula

The Chi-Square statistic is calculated using the following formula:

χ² = Σ [(Oᵢ – Eᵢ)² / Eᵢ]

Where:

  • Σ (Sigma) means "sum of"
  • Oᵢ is the observed frequency (the actual count) for category i
  • Eᵢ is the expected frequency (the count you would expect based on your hypothesis) for category i

The formula essentially measures the discrepancy between what you observed and what you expected. A larger Chi-Square value indicates a greater difference between observed and expected frequencies.

Degrees of Freedom (df)

Degrees of Freedom (df) is a crucial component for interpreting the Chi-Square statistic. For a goodness-of-fit test, it is calculated as:

df = (Number of Categories) – 1

The degrees of freedom tell you how many values in the final calculation of a statistic are free to vary. You will use the Chi-Square value and the degrees of freedom to look up a p-value in a Chi-Square distribution table.

Interpreting the Results

Once you have the Chi-Square value and the degrees of freedom, you compare your calculated χ² to a critical value from a Chi-Square distribution table (or use statistical software to get a p-value).

  • P-value: The p-value tells you the probability of observing a Chi-Square statistic as extreme as, or more extreme than, the one calculated, assuming the null hypothesis (that there is no significant difference between observed and expected frequencies) is true.
  • Significance Level (α): This is typically set at 0.05 (5%).
  • Conclusion:
    • If p < α (e.g., p < 0.05), you reject the null hypothesis. This suggests there is a statistically significant difference between your observed and expected frequencies.
    • If p ≥ α (e.g., p ≥ 0.05), you fail to reject the null hypothesis. This suggests there is no statistically significant difference between your observed and expected frequencies.

Example Scenario: Coin Toss

Imagine you toss a coin 100 times and observe 60 heads and 40 tails. You want to test if the coin is fair. A fair coin would be expected to yield 50 heads and 50 tails.

  • Category 1 (Heads): Observed = 60, Expected = 50
  • Category 2 (Tails): Observed = 40, Expected = 50

Using the calculator:

  • For Heads: (60 – 50)² / 50 = 10² / 50 = 100 / 50 = 2
  • For Tails: (40 – 50)² / 50 = (-10)² / 50 = 100 / 50 = 2

Chi-Square (χ²) = 2 + 2 = 4
Degrees of Freedom (df) = 2 categories – 1 = 1

With χ² = 4 and df = 1, if you look up a Chi-Square table, the p-value is less than 0.05 (specifically, around 0.045). This means you would reject the null hypothesis that the coin is fair, suggesting the coin is likely biased.

var rowCount = 3; // Initial number of rows function addRow() { var container = document.getElementById("chiSquareInputs"); var newRow = document.createElement("div"); newRow.className = "input-row"; newRow.id = "row_" + rowCount; newRow.innerHTML = ` `; container.appendChild(newRow); rowCount++; } function validateInput(inputElement) { // Ensure input is a non-negative number if (inputElement.value < 0) { inputElement.value = 0; } // For expected frequencies, ensure it's not zero if (inputElement.id.startsWith("expected_") && parseFloat(inputElement.value) === 0) { inputElement.value = 0.01; // Smallest positive value } } function calculateChiSquare() { var chiSquareSum = 0; var numValidCategories = 0; var resultDiv = document.getElementById("chiSquareResult"); resultDiv.innerHTML = ""; // Clear previous results for (var i = 0; i < rowCount; i++) { var observedInput = document.getElementById("observed_" + i); var expectedInput = document.getElementById("expected_" + i); // Skip if row doesn't exist (e.g., if rows were dynamically removed, though not implemented here) if (!observedInput || !expectedInput) { continue; } var observed = parseFloat(observedInput.value); var expected = parseFloat(expectedInput.value); // Validate inputs if (isNaN(observed) || isNaN(expected)) { resultDiv.innerHTML = "Error: Please enter valid numbers for all observed and expected frequencies."; return; } if (expected <= 0) { resultDiv.innerHTML = "Error: Expected frequencies must be greater than zero."; return; } if (observed < 0) { resultDiv.innerHTML = "Error: Observed frequencies cannot be negative."; return; } // Only include categories with valid, non-empty inputs in the calculation if (observedInput.value !== "" && expectedInput.value !== "") { chiSquareSum += Math.pow(observed – expected, 2) / expected; numValidCategories++; } } if (numValidCategories < 2) { resultDiv.innerHTML = "Error: At least two categories with valid observed and expected frequencies are required for a meaningful Chi-Square test."; return; } var degreesOfFreedom = numValidCategories – 1; resultDiv.innerHTML = ` Chi-Square (χ²) Value: ${chiSquareSum.toFixed(4)} Degrees of Freedom (df): ${degreesOfFreedom} To interpret these results, compare your Chi-Square value to a critical value from a Chi-Square distribution table using ${degreesOfFreedom} degrees of freedom, or use statistical software to find the p-value. `; } .chi-square-calculator-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 800px; margin: 20px auto; padding: 25px; border: 1px solid #e0e0e0; border-radius: 8px; background-color: #fdfdfd; box-shadow: 0 2px 5px rgba(0,0,0,0.05); } .chi-square-calculator-container h2 { color: #333; text-align: center; margin-bottom: 25px; font-size: 1.8em; } .chi-square-calculator-container h3 { color: #444; margin-top: 30px; margin-bottom: 15px; font-size: 1.4em; } .chi-square-calculator-container h4 { color: #555; margin-top: 20px; margin-bottom: 10px; font-size: 1.2em; } .chi-square-calculator-container p { line-height: 1.6; color: #666; margin-bottom: 10px; } .chi-square-calculator-container ul { list-style-type: disc; margin-left: 20px; margin-bottom: 15px; color: #666; } .chi-square-calculator-container ul li { margin-bottom: 5px; } #chiSquareInputs .input-row { display: flex; flex-wrap: wrap; align-items: center; margin-bottom: 15px; padding: 10px; background-color: #f9f9f9; border: 1px solid #eee; border-radius: 5px; } #chiSquareInputs .input-row label { flex: 1 1 180px; /* Adjust label width */ margin-right: 10px; font-weight: bold; color: #555; } #chiSquareInputs .input-row input[type="number"] { flex: 1 1 120px; /* Adjust input width */ padding: 8px 10px; border: 1px solid #ccc; border-radius: 4px; font-size: 1em; margin-right: 15px; box-sizing: border-box; } #chiSquareInputs .input-row input[type="number"]:focus { border-color: #007bff; outline: none; box-shadow: 0 0 0 0.2rem rgba(0,123,255,.25); } .chi-square-calculator-container button { background-color: #007bff; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; font-size: 1em; margin-right: 10px; margin-top: 10px; transition: background-color 0.2s ease; } .chi-square-calculator-container button:hover { background-color: #0056b3; } #chiSquareResult { margin-top: 25px; padding: 15px; border: 1px solid #d4edda; background-color: #d4edda; color: #155724; border-radius: 5px; font-size: 1.1em; } #chiSquareResult p { margin: 5px 0; color: #155724; } #chiSquareResult p strong { color: #0a3616; } #chiSquareResult p.error { color: #721c24; background-color: #f8d7da; border-color: #f5c6cb; padding: 10px; border-radius: 5px; } @media (max-width: 600px) { #chiSquareInputs .input-row { flex-direction: column; align-items: flex-start; } #chiSquareInputs .input-row label, #chiSquareInputs .input-row input[type="number"] { width: 100%; margin-right: 0; margin-bottom: 8px; } #chiSquareInputs .input-row input[type="number"] { margin-bottom: 15px; } .chi-square-calculator-container button { width: 100%; margin-right: 0; margin-bottom: 10px; } }

Leave a Reply

Your email address will not be published. Required fields are marked *