Binomial Pdf Calculator

Binomial Probability PDF Calculator

Result:

function factorial(n) { if (n < 0) return NaN; if (n === 0 || n === 1) return 1; var res = 1; for (var i = 2; i <= n; i++) { res *= i; } return res; } function combinations(n, k) { if (k n) { return 0; } if (k === 0 || k === n) { return 1; } if (k > n / 2) { k = n – k; } var res = 1; for (var i = 1; i <= k; i++) { res = res * (n – i + 1) / i; } return res; } function calculateBinomialPDF() { var numTrialsInput = document.getElementById("numTrials").value; var numSuccessesInput = document.getElementById("numSuccesses").value; var probSuccessInput = document.getElementById("probSuccess").value; var resultDiv = document.getElementById("result"); var n = parseFloat(numTrialsInput); var k = parseFloat(numSuccessesInput); var p = parseFloat(probSuccessInput); if (isNaN(n) || isNaN(k) || isNaN(p)) { resultDiv.innerHTML = "Please enter valid numbers for all fields."; return; } if (n < 0 || !Number.isInteger(n)) { resultDiv.innerHTML = "Number of Trials (n) must be a non-negative integer."; return; } if (k < 0 || !Number.isInteger(k)) { resultDiv.innerHTML = "Number of Successes (k) must be a non-negative integer."; return; } if (p 1) { resultDiv.innerHTML = "Probability of Success (p) must be between 0 and 1."; return; } if (k > n) { resultDiv.innerHTML = "Number of Successes (k) cannot be greater than Number of Trials (n)."; return; } var combinations_nk = combinations(n, k); var prob_k_successes = Math.pow(p, k); var prob_n_minus_k_failures = Math.pow((1 – p), (n – k)); var binomialProbability = combinations_nk * prob_k_successes * prob_n_minus_k_failures; resultDiv.innerHTML = "P(X = " + k + ") = " + binomialProbability.toFixed(8); } .calculator-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f9f9f9; border: 1px solid #ddd; border-radius: 8px; padding: 25px; max-width: 500px; margin: 30px auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); } .calculator-container h2 { text-align: center; color: #333; margin-bottom: 25px; font-size: 1.8em; } .calculator-content .input-group { margin-bottom: 18px; display: flex; flex-direction: column; } .calculator-content label { margin-bottom: 8px; color: #555; font-size: 1em; font-weight: bold; } .calculator-content input[type="number"] { padding: 12px; border: 1px solid #ccc; border-radius: 5px; font-size: 1.1em; width: 100%; box-sizing: border-box; transition: border-color 0.3s; } .calculator-content input[type="number"]:focus { border-color: #007bff; outline: none; } .calculator-content .calculate-button { background-color: #007bff; color: white; padding: 13px 25px; border: none; border-radius: 5px; cursor: pointer; font-size: 1.15em; width: 100%; box-sizing: border-box; transition: background-color 0.3s ease; margin-top: 15px; } .calculator-content .calculate-button:hover { background-color: #0056b3; } .calculator-content .result-group { margin-top: 25px; padding: 15px; background-color: #e9f7ff; border: 1px solid #cce5ff; border-radius: 5px; text-align: center; } .calculator-content .result-group h3 { color: #007bff; margin-top: 0; margin-bottom: 10px; font-size: 1.3em; } .calculator-content .result-group p { color: #333; font-size: 1.2em; font-weight: bold; margin: 0; }

Understanding the Binomial Probability Distribution Function (PDF)

The Binomial Probability Distribution Function (PDF) is a fundamental concept in probability theory and statistics. It helps us calculate the probability of obtaining a specific number of successes in a fixed number of independent trials, where each trial has only two possible outcomes: success or failure.

What is a Binomial Distribution?

A random experiment follows a binomial distribution if it meets four key criteria:

  1. Fixed Number of Trials (n): The experiment consists of a predetermined number of identical trials.
  2. Two Possible Outcomes: Each trial results in either a "success" or a "failure."
  3. Independent Trials: The outcome of one trial does not affect the outcome of any other trial.
  4. Constant Probability of Success (p): The probability of success remains the same for every trial. Consequently, the probability of failure (q) is also constant, where q = 1 – p.

The Binomial PDF Formula

The probability of getting exactly 'k' successes in 'n' trials is given by the formula:

P(X = k) = C(n, k) * p^k * (1 - p)^(n - k)

Where:

  • P(X = k) is the probability of exactly 'k' successes.
  • n is the total number of trials.
  • k is the specific number of successes we are interested in.
  • p is the probability of success on a single trial.
  • (1 - p) is the probability of failure on a single trial.
  • C(n, k) is the binomial coefficient, often read as "n choose k". It represents the number of ways to choose 'k' successes from 'n' trials and is calculated as: C(n, k) = n! / (k! * (n - k)!) where '!' denotes the factorial function (e.g., 5! = 5 * 4 * 3 * 2 * 1).

When to Use the Binomial PDF Calculator

This calculator is useful in various scenarios where you need to find the probability of a precise number of successes. Here are some examples:

  • Quality Control: What is the probability that exactly 2 out of 10 randomly selected products are defective, if the defect rate is 5%? (n=10, k=2, p=0.05)
  • Medical Trials: If a new drug has a 70% success rate, what is the probability that exactly 7 out of 10 patients respond positively? (n=10, k=7, p=0.70)
  • Sports Statistics: A basketball player makes 80% of their free throws. What is the probability they make exactly 4 out of their next 5 free throws? (n=5, k=4, p=0.80)
  • Surveys: If 60% of a population supports a certain policy, what is the probability that exactly 3 out of 5 randomly chosen people support it? (n=5, k=3, p=0.60)

How to Use the Calculator

  1. Number of Trials (n): Enter the total number of times the experiment is performed.
  2. Number of Successes (k): Enter the exact number of successes you want to find the probability for.
  3. Probability of Success (p): Enter the probability of a single trial resulting in success (as a decimal between 0 and 1).
  4. Click "Calculate Probability" to see the result.

The calculator will output the probability P(X = k), which is the likelihood of observing exactly 'k' successes given 'n' trials and a success probability 'p'.

Leave a Reply

Your email address will not be published. Required fields are marked *