Thevenin Calculator

Thevenin Equivalent Circuit Calculator .thevenin-wrapper { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; background-color: #f9f9f9; border: 1px solid #e0e0e0; border-radius: 8px; } .calc-container { background-color: #ffffff; padding: 25px; border-radius: 8px; box-shadow: 0 2px 5px rgba(0,0,0,0.05); margin-bottom: 30px; } .calc-title { text-align: center; color: #2c3e50; margin-bottom: 20px; font-size: 24px; } .circuit-diagram { text-align: center; margin-bottom: 20px; padding: 10px; background: #f0f4f8; border-radius: 4px; font-size: 0.9em; color: #555; } .form-group { margin-bottom: 15px; display: flex; flex-direction: column; } .form-group label { font-weight: 600; margin-bottom: 5px; color: #34495e; } .form-group input { padding: 10px; border: 1px solid #ccc; border-radius: 4px; font-size: 16px; } .form-row { display: flex; gap: 20px; flex-wrap: wrap; } .form-col { flex: 1; min-width: 200px; } .btn-row { margin-top: 20px; display: flex; gap: 10px; } .btn-calc { background-color: #3498db; color: white; border: none; padding: 12px 24px; border-radius: 4px; cursor: pointer; font-size: 16px; font-weight: bold; flex: 2; transition: background 0.3s; } .btn-calc:hover { background-color: #2980b9; } .btn-reset { background-color: #95a5a6; color: white; border: none; padding: 12px 24px; border-radius: 4px; cursor: pointer; font-size: 16px; flex: 1; } .btn-reset:hover { background-color: #7f8c8d; } .results-box { margin-top: 25px; background-color: #e8f6f3; border: 1px solid #a3e4d7; padding: 20px; border-radius: 4px; display: none; } .results-box h3 { margin-top: 0; color: #16a085; border-bottom: 1px solid #a3e4d7; padding-bottom: 10px; } .result-row { display: flex; justify-content: space-between; margin-bottom: 10px; font-size: 16px; } .result-label { color: #555; } .result-val { font-weight: bold; color: #2c3e50; } .article-content { line-height: 1.6; color: #333; } .article-content h2 { color: #2c3e50; margin-top: 30px; } .article-content h3 { color: #34495e; } .article-content ul { margin-bottom: 20px; } .article-content li { margin-bottom: 8px; } .highlight-box { background: #fff3cd; border-left: 5px solid #ffc107; padding: 15px; margin: 20px 0; }

Thevenin Equivalent Calculator

Circuit Topology: Voltage Source (Vs) in series with R1, connected to R2 in parallel.
Terminals A and B are across Resistor R2.

Thevenin Equivalent Results

Thevenin Voltage (Vth):
Thevenin Resistance (Rth):
Current through Load (IL):
Voltage across Load (VL):
Power dissipated by Load (PL):

Understanding Thevenin's Theorem in Circuit Analysis

Thevenin's Theorem is a fundamental principle in electrical engineering that simplifies the analysis of complex linear circuits. It states that any linear electrical network containing only voltage sources, current sources, and resistances can be replaced at terminals A-B by an equivalent combination of a single voltage source (Vth) in series with a single resistor (Rth).

Why Use a Thevenin Calculator?

Analyzing circuits with varying loads can be tedious if you have to recalculate the entire circuit every time the load resistor changes. By converting the complex part of the circuit into its Thevenin equivalent, calculating the current and voltage for any specific load becomes a simple Ohm's Law calculation.

Key Concept: The Thevenin Voltage (Vth) is the open-circuit voltage at the terminals, while the Thevenin Resistance (Rth) is the resistance measured at the terminals with all independent sources turned off (voltage sources shorted, current sources opened).

Formulas Used in This Calculator

This calculator assumes a standard voltage divider configuration where a source Vs is in series with R1, and the output terminals are across R2. The formulas are derived as follows:

1. Calculating Thevenin Voltage (Vth)

The Thevenin voltage is found by calculating the voltage drop across R2 using the voltage divider rule:

Vth = Vs × [ R2 / (R1 + R2) ]

2. Calculating Thevenin Resistance (Rth)

To find the Thevenin resistance, we short-circuit the voltage source Vs. This places R1 and R2 in parallel relative to the output terminals:

Rth = (R1 × R2) / (R1 + R2)

3. Calculating Load Parameters (with RL)

Once the equivalent circuit is established, if you connect a load resistor (RL), the current flowing through it (IL) is calculated as:

IL = Vth / (Rth + RL)

Example Calculation

Let's say you have a circuit with the following parameters:

  • Source Voltage (Vs): 12 Volts
  • Resistor 1 (R1): 1000 Ohms (1 kΩ)
  • Resistor 2 (R2): 2000 Ohms (2 kΩ)

Step 1: Find Vth
Vth = 12 × (2000 / (1000 + 2000)) = 12 × (2/3) = 8 Volts

Step 2: Find Rth
Rth = (1000 × 2000) / (1000 + 2000) = 2,000,000 / 3000 = 666.67 Ohms

Now, the entire complex circuit acts exactly like an 8V battery with a 666.67Ω internal resistance.

function calculateThevenin() { // Get input values var vs = document.getElementById('th_vs').value; var r1 = document.getElementById('th_r1').value; var r2 = document.getElementById('th_r2').value; var rl = document.getElementById('th_rl').value; // Validate inputs if (vs === "" || r1 === "" || r2 === "") { alert("Please enter values for Source Voltage, R1, and R2."); return; } var vsNum = parseFloat(vs); var r1Num = parseFloat(r1); var r2Num = parseFloat(r2); var rlNum = rl === "" ? null : parseFloat(rl); if (r1Num <= 0 || r2Num Voltage Divider var vth = vsNum * (r2Num / (r1Num + r2Num)); // Rth = (R1 * R2) / (R1 + R2) -> Parallel Resistance (Source shorted) var rth = (r1Num * r2Num) / (r1Num + r2Num); // Display Thevenin results document.getElementById('res_vth').innerHTML = vth.toFixed(3) + " V"; document.getElementById('res_rth').innerHTML = rth.toFixed(3) + " Ω"; // Show results container document.getElementById('th_results').style.display = "block"; // Calculate Load parameters if RL is provided var loadContainer = document.getElementById('load_results'); if (rlNum !== null && !isNaN(rlNum)) { if (rlNum < 0) { alert("Load Resistance cannot be negative."); return; } // IL = Vth / (Rth + RL) var il = vth / (rth + rlNum); // VL = IL * RL var vl = il * rlNum; // Power = IL^2 * RL var pl = il * il * rlNum; // Format Current units (Amps vs mA) var ilDisplay = il.toFixed(5) + " A"; if (il < 0.1) { ilDisplay = (il * 1000).toFixed(3) + " mA"; } // Format Power units (Watts vs mW) var plDisplay = pl.toFixed(5) + " W"; if (pl < 0.1) { plDisplay = (pl * 1000).toFixed(3) + " mW"; } document.getElementById('res_il').innerHTML = ilDisplay; document.getElementById('res_vl').innerHTML = vl.toFixed(3) + " V"; document.getElementById('res_pl').innerHTML = plDisplay; loadContainer.style.display = "block"; } else { loadContainer.style.display = "none"; } } function resetThevenin() { document.getElementById('th_vs').value = ""; document.getElementById('th_r1').value = ""; document.getElementById('th_r2').value = ""; document.getElementById('th_rl').value = ""; document.getElementById('th_results').style.display = "none"; document.getElementById('load_results').style.display = "none"; }

Leave a Reply

Your email address will not be published. Required fields are marked *