Cable Size Calculator Australia

.cable-calc-container { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; max-width: 800px; margin: 20px auto; padding: 25px; border: 1px solid #ddd; border-radius: 8px; background-color: #f9f9f9; color: #333; } .cable-calc-container h2 { color: #0056b3; text-align: center; margin-bottom: 25px; } .calc-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; } .calc-group { margin-bottom: 15px; } .calc-group label { display: block; font-weight: bold; margin-bottom: 5px; font-size: 14px; } .calc-group input, .calc-group select { width: 100%; padding: 10px; border: 1px solid #ccc; border-radius: 4px; box-sizing: border-box; } .calc-button { grid-column: span 2; background-color: #0056b3; color: white; padding: 15px; border: none; border-radius: 5px; cursor: pointer; font-size: 16px; font-weight: bold; transition: background-color 0.3s; } .calc-button:hover { background-color: #004494; } .calc-result { margin-top: 25px; padding: 20px; background-color: #e7f3ff; border-left: 5px solid #0056b3; display: none; } .result-item { margin-bottom: 10px; font-size: 18px; } .result-item span { font-weight: bold; color: #0056b3; } .cable-article { margin-top: 40px; line-height: 1.6; } .cable-article h3 { color: #222; border-bottom: 2px solid #0056b3; padding-bottom: 5px; } .cable-article p { margin-bottom: 15px; } .cable-article ul { margin-bottom: 15px; padding-left: 20px; } @media (max-width: 600px) { .calc-grid { grid-template-columns: 1fr; } .calc-button { grid-column: span 1; } }

AS/NZS 3008 Cable Size Calculator

Single Phase (230V) Three Phase (400V)
Current (Amps) Power (Watts) Power (Kilowatts)
Minimum Cable Size: mm²
Calculated Current: A
Actual Voltage Drop: V (%)
*Note: Based on Copper conductors, V-90 insulation at 75°C. Always refer to AS/NZS 3008.1.1 for final verification.

Understanding Cable Sizing in Australia (AS/NZS 3008)

In Australia, electrical installations must comply with the AS/NZS 3000 (Wiring Rules) and AS/NZS 3008.1.1 standards. Choosing the correct cable size is not just about making the equipment work; it is a critical safety requirement to prevent fires and ensure equipment longevity.

Key Factors in Cable Selection

  • Current Carrying Capacity (Ampacity): The cable must be thick enough to carry the electrical current without overheating. This is affected by the installation method (e.g., in a conduit, in the ground, or in free air).
  • Voltage Drop: As electricity travels through a wire, some energy is lost as heat due to resistance. AS/NZS 3000 generally limits voltage drop to 5% from the point of supply to any point in the installation.
  • Short Circuit Performance: The cable must be able to withstand the heat generated during a fault until the circuit breaker trips.
  • Environment: Ambient temperature and proximity to other cables significantly affect how much heat a cable can dissipate.

Typical Cable Sizes for Australian Homes

While this calculator provides mathematical minimums, common practice in AU includes:

  • 1.5mm²: Standard for lighting circuits (usually protected by a 10A breaker).
  • 2.5mm²: Standard for power outlets (usually protected by a 16A or 20A breaker).
  • 4mm² or 6mm²: Common for split-system air conditioners or ovens.
  • 10mm² to 16mm²: Common for main supply lines in residential homes.

Calculation Example

Suppose you are running a single-phase 230V circuit for a backyard shed 40 meters away with a 20 Amp load. If we aim for a 3% voltage drop:

  • Allowed drop = 230V x 0.03 = 6.9V.
  • Using a 4mm² cable (resistance approx 11.2 mV/A/m): Drop = (20A * 40m * 11.2) / 1000 = 8.96V (Fails 3%).
  • Using a 6mm² cable (resistance approx 7.49 mV/A/m): Drop = (20A * 40m * 7.49) / 1000 = 5.99V (Passes).

In this scenario, a 6mm² cable would be the minimum requirement based on voltage drop constraints.

function updateVoltage() { var phase = document.getElementById("phaseType").value; var voltInput = document.getElementById("voltage"); if (phase === "1") { voltInput.value = "230"; } else { voltInput.value = "400"; } } function calculateCableSize() { var phase = parseFloat(document.getElementById("phaseType").value); var voltage = parseFloat(document.getElementById("voltage").value); var loadType = document.getElementById("loadInputType").value; var loadValue = parseFloat(document.getElementById("loadValue").value); var length = parseFloat(document.getElementById("runLength").value); var maxDropPct = parseFloat(document.getElementById("maxDrop").value); if (isNaN(voltage) || isNaN(loadValue) || isNaN(length) || isNaN(maxDropPct)) { alert("Please enter valid numerical values."); return; } // Calculate Current (I) var current = 0; if (loadType === "amps") { current = loadValue; } else if (loadType === "watts") { if (phase === 1) { current = loadValue / voltage; } else { current = loadValue / (voltage * Math.sqrt(3)); } } else if (loadType === "kw") { if (phase === 1) { current = (loadValue * 1000) / voltage; } else { current = (loadValue * 1000) / (voltage * Math.sqrt(3)); } } var allowedDropVolts = (maxDropPct / 100) * voltage; // mV/A/m data for PVC V-90 Copper Cables (AS3008 approximation) // Format: [Size mm2, mV/A/m value] var cableData = [ [1, 44.8], [1.5, 29.9], [2.5, 18], [4, 11.2], [6, 7.49], [10, 4.48], [16, 2.81], [25, 1.80], [35, 1.29], [50, 0.942], [70, 0.672], [95, 0.493], [120, 0.395] ]; var recommendedSize = "Consult Engineer (>120mm²)"; var finalDrop = 0; var finalDropPct = 0; for (var i = 0; i < cableData.length; i++) { var size = cableData[i][0]; var mvAm = cableData[i][1]; // Formula for Voltage Drop // Single Phase: (I * L * mVAm) / 1000 // Three Phase: (I * L * mVAm) / 1000 (standardized tables often assume 3-phase mV/Am) var drop = (current * length * mvAm) / 1000; if (drop <= allowedDropVolts) { recommendedSize = size; finalDrop = drop; finalDropPct = (drop / voltage) * 100; break; } // If it's the last one and still not found if (i === cableData.length – 1) { recommendedSize = "Over 120"; finalDrop = drop; finalDropPct = (drop / voltage) * 100; } } // Display results document.getElementById("resSize").innerText = recommendedSize; document.getElementById("resCurrent").innerText = current.toFixed(2); document.getElementById("resDropVolts").innerText = finalDrop.toFixed(2); document.getElementById("resDropPercent").innerText = finalDropPct.toFixed(2); document.getElementById("resultArea").style.display = "block"; }

Leave a Reply

Your email address will not be published. Required fields are marked *