Use this calculator to determine the Chi-Square (χ²) statistic and degrees of freedom for a goodness-of-fit test.
This test helps you compare observed frequencies from a sample to expected frequencies from a theoretical distribution.
Understanding the Chi-Square Goodness-of-Fit Test
The Chi-Square (χ²) goodness-of-fit test is a statistical hypothesis test used to determine if a sample of data
matches a population with a known distribution. In simpler terms, it helps you decide if your observed data
differs significantly from what you would expect to see based on a specific theory or hypothesis.
When to Use It?
When you have one categorical variable from a single population.
When you want to compare the observed frequencies of categories with the expected frequencies.
Examples: Testing if the distribution of M&M colors in a bag matches the manufacturer's stated proportions,
or if the number of car accidents per day follows a Poisson distribution.
The Chi-Square Formula
The Chi-Square statistic is calculated using the following formula:
χ² = Σ [(Oᵢ – Eᵢ)² / Eᵢ]
Where:
Σ (Sigma) means "sum of"
Oᵢ is the observed frequency (the actual count) for category i
Eᵢ is the expected frequency (the count you would expect based on your hypothesis) for category i
The formula essentially measures the discrepancy between what you observed and what you expected. A larger
Chi-Square value indicates a greater difference between observed and expected frequencies.
Degrees of Freedom (df)
Degrees of Freedom (df) is a crucial component for interpreting the Chi-Square statistic. For a goodness-of-fit test,
it is calculated as:
df = (Number of Categories) – 1
The degrees of freedom tell you how many values in the final calculation of a statistic are free to vary.
You will use the Chi-Square value and the degrees of freedom to look up a p-value in a Chi-Square distribution table.
Interpreting the Results
Once you have the Chi-Square value and the degrees of freedom, you compare your calculated χ² to a critical value
from a Chi-Square distribution table (or use statistical software to get a p-value).
P-value: The p-value tells you the probability of observing a Chi-Square statistic as extreme
as, or more extreme than, the one calculated, assuming the null hypothesis (that there is no significant
difference between observed and expected frequencies) is true.
Significance Level (α): This is typically set at 0.05 (5%).
Conclusion:
If p < α (e.g., p < 0.05), you reject the null hypothesis. This suggests there is a statistically
significant difference between your observed and expected frequencies.
If p ≥ α (e.g., p ≥ 0.05), you fail to reject the null hypothesis. This suggests there is no
statistically significant difference between your observed and expected frequencies.
Example Scenario: Coin Toss
Imagine you toss a coin 100 times and observe 60 heads and 40 tails. You want to test if the coin is fair.
A fair coin would be expected to yield 50 heads and 50 tails.
With χ² = 4 and df = 1, if you look up a Chi-Square table, the p-value is less than 0.05 (specifically, around 0.045).
This means you would reject the null hypothesis that the coin is fair, suggesting the coin is likely biased.
var rowCount = 3; // Initial number of rows
function addRow() {
var container = document.getElementById("chiSquareInputs");
var newRow = document.createElement("div");
newRow.className = "input-row";
newRow.id = "row_" + rowCount;
newRow.innerHTML = `
`;
container.appendChild(newRow);
rowCount++;
}
function validateInput(inputElement) {
// Ensure input is a non-negative number
if (inputElement.value < 0) {
inputElement.value = 0;
}
// For expected frequencies, ensure it's not zero
if (inputElement.id.startsWith("expected_") && parseFloat(inputElement.value) === 0) {
inputElement.value = 0.01; // Smallest positive value
}
}
function calculateChiSquare() {
var chiSquareSum = 0;
var numValidCategories = 0;
var resultDiv = document.getElementById("chiSquareResult");
resultDiv.innerHTML = ""; // Clear previous results
for (var i = 0; i < rowCount; i++) {
var observedInput = document.getElementById("observed_" + i);
var expectedInput = document.getElementById("expected_" + i);
// Skip if row doesn't exist (e.g., if rows were dynamically removed, though not implemented here)
if (!observedInput || !expectedInput) {
continue;
}
var observed = parseFloat(observedInput.value);
var expected = parseFloat(expectedInput.value);
// Validate inputs
if (isNaN(observed) || isNaN(expected)) {
resultDiv.innerHTML = "Error: Please enter valid numbers for all observed and expected frequencies.";
return;
}
if (expected <= 0) {
resultDiv.innerHTML = "Error: Expected frequencies must be greater than zero.";
return;
}
if (observed < 0) {
resultDiv.innerHTML = "Error: Observed frequencies cannot be negative.";
return;
}
// Only include categories with valid, non-empty inputs in the calculation
if (observedInput.value !== "" && expectedInput.value !== "") {
chiSquareSum += Math.pow(observed – expected, 2) / expected;
numValidCategories++;
}
}
if (numValidCategories < 2) {
resultDiv.innerHTML = "Error: At least two categories with valid observed and expected frequencies are required for a meaningful Chi-Square test.";
return;
}
var degreesOfFreedom = numValidCategories – 1;
resultDiv.innerHTML = `
Chi-Square (χ²) Value: ${chiSquareSum.toFixed(4)}
Degrees of Freedom (df): ${degreesOfFreedom}
To interpret these results, compare your Chi-Square value to a critical value from a Chi-Square distribution table using ${degreesOfFreedom} degrees of freedom, or use statistical software to find the p-value.
`;
}
.chi-square-calculator-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
max-width: 800px;
margin: 20px auto;
padding: 25px;
border: 1px solid #e0e0e0;
border-radius: 8px;
background-color: #fdfdfd;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
}
.chi-square-calculator-container h2 {
color: #333;
text-align: center;
margin-bottom: 25px;
font-size: 1.8em;
}
.chi-square-calculator-container h3 {
color: #444;
margin-top: 30px;
margin-bottom: 15px;
font-size: 1.4em;
}
.chi-square-calculator-container h4 {
color: #555;
margin-top: 20px;
margin-bottom: 10px;
font-size: 1.2em;
}
.chi-square-calculator-container p {
line-height: 1.6;
color: #666;
margin-bottom: 10px;
}
.chi-square-calculator-container ul {
list-style-type: disc;
margin-left: 20px;
margin-bottom: 15px;
color: #666;
}
.chi-square-calculator-container ul li {
margin-bottom: 5px;
}
#chiSquareInputs .input-row {
display: flex;
flex-wrap: wrap;
align-items: center;
margin-bottom: 15px;
padding: 10px;
background-color: #f9f9f9;
border: 1px solid #eee;
border-radius: 5px;
}
#chiSquareInputs .input-row label {
flex: 1 1 180px; /* Adjust label width */
margin-right: 10px;
font-weight: bold;
color: #555;
}
#chiSquareInputs .input-row input[type="number"] {
flex: 1 1 120px; /* Adjust input width */
padding: 8px 10px;
border: 1px solid #ccc;
border-radius: 4px;
font-size: 1em;
margin-right: 15px;
box-sizing: border-box;
}
#chiSquareInputs .input-row input[type="number"]:focus {
border-color: #007bff;
outline: none;
box-shadow: 0 0 0 0.2rem rgba(0,123,255,.25);
}
.chi-square-calculator-container button {
background-color: #007bff;
color: white;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
font-size: 1em;
margin-right: 10px;
margin-top: 10px;
transition: background-color 0.2s ease;
}
.chi-square-calculator-container button:hover {
background-color: #0056b3;
}
#chiSquareResult {
margin-top: 25px;
padding: 15px;
border: 1px solid #d4edda;
background-color: #d4edda;
color: #155724;
border-radius: 5px;
font-size: 1.1em;
}
#chiSquareResult p {
margin: 5px 0;
color: #155724;
}
#chiSquareResult p strong {
color: #0a3616;
}
#chiSquareResult p.error {
color: #721c24;
background-color: #f8d7da;
border-color: #f5c6cb;
padding: 10px;
border-radius: 5px;
}
@media (max-width: 600px) {
#chiSquareInputs .input-row {
flex-direction: column;
align-items: flex-start;
}
#chiSquareInputs .input-row label,
#chiSquareInputs .input-row input[type="number"] {
width: 100%;
margin-right: 0;
margin-bottom: 8px;
}
#chiSquareInputs .input-row input[type="number"] {
margin-bottom: 15px;
}
.chi-square-calculator-container button {
width: 100%;
margin-right: 0;
margin-bottom: 10px;
}
}