Calculate Gauge

.gauge-calc-container { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; max-width: 800px; margin: 20px auto; padding: 25px; border: 1px solid #e0e0e0; border-radius: 12px; background-color: #ffffff; box-shadow: 0 4px 20px rgba(0,0,0,0.08); color: #333; } .gauge-calc-header { text-align: center; margin-bottom: 30px; } .gauge-calc-header h2 { color: #1a73e8; margin: 0; font-size: 28px; } .gauge-calc-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; margin-bottom: 25px; } .gauge-input-group { display: flex; flex-direction: column; } .gauge-input-group label { font-weight: 600; margin-bottom: 8px; font-size: 14px; color: #555; } .gauge-input-group input, .gauge-input-group select { padding: 12px; border: 1px solid #ccc; border-radius: 6px; font-size: 16px; transition: border-color 0.3s; } .gauge-input-group input:focus { border-color: #1a73e8; outline: none; } .gauge-calc-btn { grid-column: span 2; background-color: #1a73e8; color: white; padding: 15px; border: none; border-radius: 6px; font-size: 18px; font-weight: bold; cursor: pointer; transition: background-color 0.3s; } .gauge-calc-btn:hover { background-color: #1557b0; } .gauge-results { margin-top: 30px; padding: 20px; background-color: #f8f9fa; border-radius: 8px; border-left: 5px solid #1a73e8; display: none; } .gauge-result-item { display: flex; justify-content: space-between; padding: 10px 0; border-bottom: 1px solid #eee; } .gauge-result-item:last-child { border-bottom: none; } .gauge-result-label { font-weight: 600; } .gauge-result-value { color: #1a73e8; font-weight: bold; font-size: 18px; } .gauge-content { margin-top: 40px; line-height: 1.6; color: #444; } .gauge-content h3 { color: #222; border-bottom: 2px solid #1a73e8; display: inline-block; padding-bottom: 5px; } @media (max-width: 600px) { .gauge-calc-grid { grid-template-columns: 1fr; } .gauge-calc-btn { grid-column: 1; } }

Wire Gauge & Voltage Drop Calculator

Calculate the minimum required AWG for your electrical circuit

Copper Aluminum
DC / AC Single Phase AC Three Phase
Recommended AWG:
Calculated Voltage Drop:
Wire Area (mm²):
Resistance (Ohms):

How to Calculate Wire Gauge

To calculate gauge requirements accurately, you must consider the electrical resistance of the conductor material, the total length of the circuit, and the maximum allowable voltage drop for your specific application.

The Physics of Gauge: As current flows through a wire, the internal resistance of the metal causes a drop in voltage. This energy is lost as heat. If the wire is too thin (higher gauge number), the resistance is higher, leading to excessive heat and potentially dangerous conditions or equipment failure.

Key Variables in Calculation

  • Amperage (Current): The amount of electrical flow. Higher amperage requires a thicker wire (lower AWG).
  • Distance: The longer the wire, the more resistance it has. You must account for the full circuit path.
  • Voltage Drop: For critical electronics, a 3% drop is standard. For lighting or non-critical loads, 5-10% may be acceptable.
  • Material: Copper is more conductive than aluminum, meaning a copper wire can be thinner than an aluminum wire to carry the same load.

Common AWG Standards Table

AWG Diameter (mm) Max Amps (Copper)
45.18960-85
83.26440-50
102.58830
122.05320
141.62815
function calculateWireGauge() { var voltage = parseFloat(document.getElementById('voltage').value); var current = parseFloat(document.getElementById('current').value); var distance = parseFloat(document.getElementById('distance').value); var dropPct = parseFloat(document.getElementById('allowableDrop').value); var material = document.getElementById('material').value; var phaseFactor = parseFloat(document.getElementById('phase').value); if (isNaN(voltage) || isNaN(current) || isNaN(distance) || isNaN(dropPct)) { alert("Please enter valid numerical values."); return; } // Resistivity (Rho) in Ohm-cmil/ft // Copper: 10.4, Aluminum: 17.0 var rho = (material === 'copper') ? 10.4 : 17.0; // Allowable Voltage Drop (Actual Volts) var vDropMax = (dropPct / 100) * voltage; // Circular Mils Formula: CM = (Rho * I * L * Factor) / Vdrop // L is one-way distance in feet var circularMils = (rho * current * distance * phaseFactor) / vDropMax; // AWG Lookup Table (Circular Mils) var awgTable = [ {awg: "4/0", cmil: 211600}, {awg: "3/0", cmil: 167800}, {awg: "2/0", cmil: 133100}, {awg: "1/0", cmil: 105600}, {awg: "1", cmil: 83690}, {awg: "2", cmil: 66360}, {awg: "4", cmil: 41740}, {awg: "6", cmil: 26240}, {awg: "8", cmil: 16510}, {awg: "10", cmil: 10380}, {awg: "12", cmil: 6530}, {awg: "14", cmil: 4110}, {awg: "16", cmil: 2580}, {awg: "18", cmil: 1620}, {awg: "20", cmil: 1020}, {awg: "22", cmil: 640} ]; var recommendedAWG = "Smaller than 22"; var finalArea = 0; for (var i = awgTable.length – 1; i >= 0; i–) { if (awgTable[i].cmil >= circularMils) { recommendedAWG = awgTable[i].awg; finalArea = awgTable[i].cmil * 0.0005067; // convert cmil to mm2 break; } if (i === 0 && circularMils > awgTable[0].cmil) { recommendedAWG = "Larger than 4/0 (Consult NEC)"; finalArea = circularMils * 0.0005067; } } // Actual Voltage Drop Calculation based on chosen AWG // Using the original target CM for the display var actualVDrop = (rho * current * distance * phaseFactor) / circularMils; var totalResistance = (rho * distance * phaseFactor) / circularMils; document.getElementById('resAWG').innerText = recommendedAWG; document.getElementById('resVDrop').innerText = actualVDrop.toFixed(2) + " V (" + dropPct.toFixed(1) + "%)"; document.getElementById('resArea').innerText = finalArea.toFixed(3) + " mm²"; document.getElementById('resResistance').innerText = totalResistance.toFixed(4) + " Ω"; document.getElementById('gaugeResultBox').style.display = 'block'; }

Leave a Reply

Your email address will not be published. Required fields are marked *