Calculating Integrals

Definite Integral Calculator (Trapezoidal Rule)

This calculator approximates the definite integral of a function over a given interval using the Trapezoidal Rule. The Trapezoidal Rule is a numerical method for approximating the definite integral, which is the area under the curve of a function between two points.

Use 'x' as the variable. For powers, use `Math.pow(x, y)`. For trigonometric functions, use `Math.sin(x)`, `Math.cos(x)`, etc. For e^x, use `Math.exp(x)`.







Result:

function calculateIntegral() { var funcExpr = document.getElementById('function_expression').value; var lowerLimit = parseFloat(document.getElementById('lower_limit').value); var upperLimit = parseFloat(document.getElementById('upper_limit').value); var numIntervals = parseInt(document.getElementById('num_intervals').value); var resultDiv = document.getElementById('integral_result'); if (isNaN(lowerLimit) || isNaN(upperLimit) || isNaN(numIntervals) || numIntervals = upperLimit) { resultDiv.innerHTML = 'The lower limit must be less than the upper limit.'; return; } // Create a function from the expression string var f; try { // Use a safe way to evaluate the function string // This creates a function that takes 'x' as an argument f = new Function('x', 'return ' + funcExpr + ';'); } catch (e) { resultDiv.innerHTML = 'Invalid function expression. Please check your syntax. Error: ' + e.message + "; return; } var h = (upperLimit – lowerLimit) / numIntervals; var sum = 0.5 * (f(lowerLimit) + f(upperLimit)); // First and last terms for (var i = 1; i < numIntervals; i++) { var x_i = lowerLimit + i * h; try { sum += f(x_i); } catch (e) { resultDiv.innerHTML = 'Error evaluating function at x = ' + x_i + '. Please check your function expression. Error: ' + e.message + ''; return; } } var integralValue = h * sum; resultDiv.innerHTML = 'The approximate definite integral is: ' + integralValue.toFixed(6) + ''; } .integral-calculator-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f9f9f9; border: 1px solid #ddd; border-radius: 8px; padding: 25px; max-width: 600px; margin: 20px auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); color: #333; } .integral-calculator-container h2 { color: #2c3e50; text-align: center; margin-bottom: 20px; font-size: 1.8em; } .integral-calculator-container p { margin-bottom: 15px; line-height: 1.6; color: #555; } .calculator-form label { display: block; margin-bottom: 8px; font-weight: bold; color: #34495e; } .calculator-form input[type="text"], .calculator-form input[type="number"] { width: calc(100% – 22px); padding: 10px; margin-bottom: 10px; border: 1px solid #ccc; border-radius: 5px; font-size: 1em; box-sizing: border-box; } .calculator-form small { display: block; margin-top: -5px; margin-bottom: 15px; color: #777; font-size: 0.85em; } .calculator-form button { background-color: #007bff; color: white; padding: 12px 25px; border: none; border-radius: 5px; cursor: pointer; font-size: 1.1em; display: block; width: 100%; transition: background-color 0.3s ease; } .calculator-form button:hover { background-color: #0056b3; } .calculator-result { margin-top: 25px; padding: 15px; background-color: #e9f7ef; border: 1px solid #d4edda; border-radius: 8px; text-align: center; } .calculator-result h3 { color: #28a745; margin-top: 0; font-size: 1.5em; } #integral_result { font-size: 1.6em; font-weight: bold; color: #007bff; word-wrap: break-word; }

Understanding Integrals and the Trapezoidal Rule

In mathematics, an integral is a fundamental concept in calculus used to find the total accumulation of a quantity. It can be thought of as the area under the curve of a function on a graph. When we talk about a definite integral, we are calculating this area between two specific points (a lower limit and an upper limit) on the x-axis.

Why Numerical Integration?

While many integrals can be solved analytically (using symbolic methods), some functions are too complex or even impossible to integrate exactly. In such cases, or when dealing with experimental data, numerical integration methods come to the rescue. These methods approximate the value of the definite integral by dividing the area under the curve into many smaller, simpler shapes whose areas can be easily calculated and summed up.

The Trapezoidal Rule Explained

The Trapezoidal Rule is one of the simplest and most intuitive numerical integration techniques. Instead of approximating the area under the curve with rectangles (as in Riemann sums), it uses trapezoids. Here's how it works:

  1. The interval [a, b] (from the lower limit to the upper limit) is divided into 'n' equal sub-intervals.
  2. For each sub-interval, a trapezoid is formed by connecting the function's value at the start of the sub-interval to its value at the end of the sub-interval with a straight line.
  3. The area of each trapezoid is calculated. The formula for the area of a trapezoid is (base1 + base2) / 2 * height. In our case, the 'bases' are the function values (y-coordinates) at the ends of the sub-interval, and the 'height' is the width of the sub-interval (h).
  4. All these individual trapezoidal areas are summed up to get the total approximate area under the curve, which is the definite integral.

The formula for the Trapezoidal Rule is:

ab f(x) dx ≈ (h/2) * [f(a) + 2f(x1) + 2f(x2) + ... + 2f(xn-1) + f(b)]

Where:

  • h = (b - a) / n is the width of each sub-interval.
  • f(a) and f(b) are the function values at the lower and upper limits.
  • f(xi) are the function values at the intermediate points within the interval.

The accuracy of the approximation generally increases as the number of intervals (n) increases, as the trapezoids fit the curve more closely.

Example Calculation:

Let's approximate the integral of f(x) = x2 from x = 0 to x = 1 using n = 4 intervals.

  • Function: f(x) = x*x
  • Lower Limit (a): 0
  • Upper Limit (b): 1
  • Number of Intervals (n): 4

First, calculate h:

h = (b - a) / n = (1 - 0) / 4 = 0.25

The x-values for the trapezoids are: 0, 0.25, 0.5, 0.75, 1.

Now, evaluate f(x) at these points:

  • f(0) = 02 = 0
  • f(0.25) = 0.252 = 0.0625
  • f(0.5) = 0.52 = 0.25
  • f(0.75) = 0.752 = 0.5625
  • f(1) = 12 = 1

Apply the Trapezoidal Rule formula:

Integral ≈ (0.25 / 2) * [f(0) + 2f(0.25) + 2f(0.5) + 2f(0.75) + f(1)]

Integral ≈ 0.125 * [0 + 2(0.0625) + 2(0.25) + 2(0.5625) + 1]

Integral ≈ 0.125 * [0 + 0.125 + 0.5 + 1.125 + 1]

Integral ≈ 0.125 * [2.75]

Integral ≈ 0.34375

The exact integral of x2 from 0 to 1 is [x3/3] from 0 to 1, which is 13/3 - 03/3 = 1/3 ≈ 0.333333. As you can see, with just 4 intervals, the Trapezoidal Rule provides a reasonable approximation.

Leave a Reply

Your email address will not be published. Required fields are marked *