Compressibility Factor Calculator

.calc-container { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; max-width: 800px; margin: 20px auto; padding: 25px; border: 1px solid #ddd; border-radius: 8px; background-color: #f9f9f9; color: #333; box-shadow: 0 4px 6px rgba(0,0,0,0.1); } .calc-header { text-align: center; margin-bottom: 25px; } .calc-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; margin-bottom: 20px; } .input-group { display: flex; flex-direction: column; } .input-group label { font-weight: 600; margin-bottom: 8px; font-size: 14px; } .input-group input, .input-group select { padding: 10px; border: 1px solid #ccc; border-radius: 4px; font-size: 16px; } .calc-btn { grid-column: span 2; background-color: #0056b3; color: white; padding: 12px; border: none; border-radius: 4px; font-size: 18px; font-weight: bold; cursor: pointer; transition: background-color 0.2s; } .calc-btn:hover { background-color: #004494; } .result-box { margin-top: 25px; padding: 20px; background-color: #e7f3ff; border-radius: 6px; border: 1px solid #b3d7ff; text-align: center; } .result-value { font-size: 28px; font-weight: bold; color: #0056b3; } .article-section { margin-top: 40px; line-height: 1.6; } .article-section h2 { color: #222; border-bottom: 2px solid #0056b3; padding-bottom: 10px; } .article-section h3 { color: #444; margin-top: 25px; } @media (max-width: 600px) { .calc-grid { grid-template-columns: 1fr; } .calc-btn { grid-column: span 1; } }

Compressibility Factor (Z) Calculator

Calculate the gas deviation factor using the Pitzer correlation method

Calculated Compressibility Factor (Z):
0.0000

Understanding the Compressibility Factor (Z)

The compressibility factor, also known as the Z-factor or gas deviation factor, is a correction factor that describes the deviation of a real gas from ideal gas behavior. While the ideal gas law (PV = nRT) assumes that gas molecules occupy no space and have no intermolecular forces, real gases under high pressure or low temperature behave differently.

The Formula Behind the Calculation

This calculator utilizes the Pitzer Correlation, which is highly accurate for non-polar or slightly polar gases. The fundamental relationship is expressed as:

Z = 1 + B⁰(Pr / Tr) + ωB¹(Pr / Tr)

  • Pr (Reduced Pressure): The ratio of actual pressure to critical pressure (P / Pc).
  • Tr (Reduced Temperature): The ratio of actual absolute temperature to critical absolute temperature (T / Tc).
  • ω (Acentric Factor): A parameter characterizing the complexity of the molecule's shape and polarity.

Why is Z-Factor Important?

In chemical engineering, thermodynamics, and the oil and gas industry, accurately predicting gas volume is critical. For example, when measuring natural gas in a pipeline, failing to account for the Z-factor can lead to measurement errors of 10% to 20% or more, resulting in significant financial discrepancies.

Example Calculation

Suppose you are working with Methane at 50 bar and 50°C:

  • Critical Pressure (Pc): 46.0 bar
  • Critical Temperature (Tc): -82.6 °C (190.55 K)
  • Acentric Factor (ω): 0.011

After converting temperatures to Kelvin (50°C = 323.15 K) and calculating reduced properties (Pr = 1.087, Tr = 1.696), the resulting Z-factor is approximately 0.93. This indicates the real gas occupies about 93% of the volume predicted by the ideal gas law.

When to Use This Calculator

This tool is ideal for preliminary design, process simulation checks, and academic studies. It is most accurate for gases where Tr > 0.7 and Pr is not extremely high. For cryogenic applications or near-critical point calculations, more complex Equations of State (EOS) like Peng-Robinson or Soave-Redlich-Kwong are recommended.

function calculateZFactor() { var p = parseFloat(document.getElementById("pressure").value); var tC = parseFloat(document.getElementById("temperature").value); var pc = parseFloat(document.getElementById("pCrit").value); var tcC = parseFloat(document.getElementById("tCrit").value); var omega = parseFloat(document.getElementById("acentric").value); // Validation if (isNaN(p) || isNaN(tC) || isNaN(pc) || isNaN(tcC) || isNaN(omega)) { alert("Please enter valid numerical values for all fields."); return; } // Convert to absolute temperatures (Kelvin) var tK = tC + 273.15; var tcK = tcC + 273.15; if (tK <= 0 || tcK <= 0 || pc <= 0) { alert("Temperatures and pressures must be above absolute zero."); return; } // Reduced properties var tr = tK / tcK; var pr = p / pc; // B0 and B1 correlations var b0 = 0.083 – (0.422 / Math.pow(tr, 1.6)); var b1 = 0.139 – (0.172 / Math.pow(tr, 4.2)); // Z-Factor calculation var z = 1 + (b0 * (pr / tr)) + (omega * b1 * (pr / tr)); // Display results document.getElementById("resultDisplay").style.display = "block"; document.getElementById("zValue").innerHTML = z.toFixed(4); var note = ""; if (z 1) { note = "Gas is less compressible than an ideal gas (repulsive forces dominate)."; } else { note = "Gas behaves ideally."; } document.getElementById("deviationNote").innerHTML = note; // Scroll to result document.getElementById("resultDisplay").scrollIntoView({ behavior: 'smooth', block: 'nearest' }); }

Leave a Reply

Your email address will not be published. Required fields are marked *