Hesse Matrix Calculator

Hessian Matrix Calculator (2×2)

Determine local extrema and saddle points using the Second Derivative Test.

Calculation Results

Determinant (D):

Matrix Structure:

[ , ]
[ , ]

Classification:


Understanding the Hessian (Hesse) Matrix

In mathematics, the Hessian matrix (or Hesse matrix) is a square matrix of second-order partial derivatives of a scalar-valued function. It is a fundamental tool used in multi-variable calculus for optimization and identifying the nature of critical points.

The 2×2 Hessian Matrix Formula

For a function $f(x, y)$, the Hessian matrix is defined as:

H = | fxx fxy |
    | fyx fyy |

Note: According to Clairaut's Theorem, if the second derivatives are continuous, then $f_{xy} = f_{yx}$.

The Second Derivative Test

To classify a critical point $(a, b)$, we calculate the determinant D of the Hessian matrix:

D = (fxx * fyy) – (fxy)2

  • If D > 0 and fxx > 0: The point is a Local Minimum.
  • If D > 0 and fxx < 0: The point is a Local Maximum.
  • If D < 0: The point is a Saddle Point.
  • If D = 0: The test is Inconclusive.

Practical Example

Consider the function f(x, y) = x² + y². Let's analyze it at the point (0, 0):

  1. Find first derivatives: fx = 2x, fy = 2y.
  2. Find second derivatives: fxx = 2, fyy = 2, fxy = 0.
  3. Calculate Determinant: D = (2 * 2) – (0)² = 4.
  4. Since D > 0 and fxx = 2 (which is > 0), the point (0,0) is a Local Minimum.
function calculateHessian() { var fxx = parseFloat(document.getElementById('fxx_val').value); var fyy = parseFloat(document.getElementById('fyy_val').value); var fxy = parseFloat(document.getElementById('fxy_val').value); var resultsDiv = document.getElementById('hessian_results'); if (isNaN(fxx) || isNaN(fyy) || isNaN(fxy)) { alert("Please enter valid numerical values for all partial derivatives."); return; } // Calculation Logic var determinant = (fxx * fyy) – (fxy * fxy); var classification = ""; var color = ""; if (determinant > 0) { if (fxx > 0) { classification = "Local Minimum"; color = "#27ae60"; } else if (fxx 0 but added for completeness classification = "Undetermined Extrema"; color = "#7f8c8d"; } } else if (determinant < 0) { classification = "Saddle Point"; color = "#e74c3c"; } else { classification = "Inconclusive (D = 0)"; color = "#7f8c8d"; } // UI Updates document.getElementById('det_res').innerText = determinant.toFixed(4); document.getElementById('m_fxx').innerText = fxx; document.getElementById('m_fyy').innerText = fyy; document.getElementById('m_fxy1').innerText = fxy; document.getElementById('m_fxy2').innerText = fxy; var classElement = document.getElementById('class_res'); classElement.innerText = classification; classElement.style.color = color; resultsDiv.style.display = "block"; }

Leave a Reply

Your email address will not be published. Required fields are marked *