Linear Regression Calculator

Linear Regression Calculator

Use this calculator to find the equation of the best-fit line (linear regression) for a set of paired data points (X, Y). Enter your X and Y values as comma-separated lists.

Understanding Linear Regression

Linear regression is a fundamental statistical method used to model the relationship between two continuous variables: a dependent variable (Y) and an independent variable (X). The goal is to find the best-fitting straight line (the regression line) that describes how Y changes as X changes. This line can then be used for prediction or to understand the strength and direction of the relationship between the variables.

How Linear Regression Works

The equation of a straight line is typically represented as Y = a + bX, where:

  • Y is the dependent variable (the one you're trying to predict).
  • X is the independent variable (the one used for prediction).
  • a is the Y-intercept, which is the value of Y when X is 0.
  • b is the slope of the line, indicating how much Y changes for every one-unit change in X.

The "best-fit" line is determined using the method of least squares, which minimizes the sum of the squared differences between the observed Y values and the Y values predicted by the line. This method provides specific formulas for calculating the slope (b) and the Y-intercept (a).

Formulas Used in This Calculator

Given a set of n paired data points (Xi, Yi):

Slope (b):

b = (n * Σ(XiYi) - ΣXi * ΣYi) / (n * Σ(Xi2) - (ΣXi)2)

Y-intercept (a):

a = (ΣYi - b * ΣXi) / n

Where:

  • n is the number of data points.
  • ΣXi is the sum of all X values.
  • ΣYi is the sum of all Y values.
  • Σ(XiYi) is the sum of the products of each X and Y pair.
  • Σ(Xi2) is the sum of the squares of each X value.

Example Calculation

Let's use the default values provided in the calculator:

X Values: 1, 2, 3, 4, 5

Y Values: 2, 4, 5, 4, 5

First, we calculate the necessary sums:

  • n = 5
  • ΣX = 1 + 2 + 3 + 4 + 5 = 15
  • ΣY = 2 + 4 + 5 + 4 + 5 = 20
  • ΣXY = (1*2) + (2*4) + (3*5) + (4*4) + (5*5) = 2 + 8 + 15 + 16 + 25 = 66
  • ΣX2 = (12) + (22) + (32) + (42) + (52) = 1 + 4 + 9 + 16 + 25 = 55

Now, calculate the slope (b):

b = (5 * 66 - 15 * 20) / (5 * 55 - 152)

b = (330 - 300) / (275 - 225)

b = 30 / 50 = 0.6

Next, calculate the Y-intercept (a):

a = (20 - 0.6 * 15) / 5

a = (20 - 9) / 5

a = 11 / 5 = 2.2

Therefore, the linear regression equation for this data set is Y = 2.2 + 0.6X.

.calculator-container { background-color: #f9f9f9; border: 1px solid #ddd; padding: 20px; border-radius: 8px; max-width: 600px; margin: 20px auto; font-family: Arial, sans-serif; } .calculator-container h2 { text-align: center; color: #333; margin-bottom: 20px; } .form-group { margin-bottom: 15px; } .form-group label { display: block; margin-bottom: 5px; font-weight: bold; color: #555; } .form-group input[type="text"] { width: calc(100% – 22px); padding: 10px; border: 1px solid #ccc; border-radius: 4px; font-size: 16px; } .calculate-button { display: block; width: 100%; padding: 12px 20px; background-color: #007bff; color: white; border: none; border-radius: 4px; font-size: 18px; cursor: pointer; transition: background-color 0.3s ease; } .calculate-button:hover { background-color: #0056b3; } .result-container { background-color: #e9ecef; border: 1px solid #dee2e6; padding: 15px; border-radius: 4px; margin-top: 20px; font-size: 1.1em; color: #333; white-space: pre-wrap; /* Ensures line breaks are respected */ } .result-container strong { color: #0056b3; } .article-content { max-width: 600px; margin: 40px auto; font-family: Arial, sans-serif; line-height: 1.6; color: #333; } .article-content h3 { color: #007bff; margin-top: 30px; margin-bottom: 15px; } .article-content p { margin-bottom: 10px; } .article-content ul { list-style-type: disc; margin-left: 20px; margin-bottom: 10px; } .article-content code { background-color: #e9ecef; padding: 2px 4px; border-radius: 3px; font-family: 'Courier New', Courier, monospace; } function calculateLinearRegression() { var xValuesInput = document.getElementById("xValues").value; var yValuesInput = document.getElementById("yValues").value; var resultDiv = document.getElementById("regressionResult"); var xArray = xValuesInput.split(',').map(function(item) { return parseFloat(item.trim()); }); var yArray = yValuesInput.split(',').map(function(item) { return parseFloat(item.trim()); }); // Filter out NaN values and ensure arrays are clean xArray = xArray.filter(function(value) { return !isNaN(value); }); yArray = yArray.filter(function(value) { return !isNaN(value); }); if (xArray.length === 0 || yArray.length === 0) { resultDiv.innerHTML = "Please enter valid numeric X and Y values."; return; } if (xArray.length !== yArray.length) { resultDiv.innerHTML = "The number of X values must match the number of Y values."; return; } var n = xArray.length; var sumX = 0; var sumY = 0; var sumXY = 0; var sumX2 = 0; for (var i = 0; i < n; i++) { sumX += xArray[i]; sumY += yArray[i]; sumXY += xArray[i] * yArray[i]; sumX2 += xArray[i] * xArray[i]; } var denominator = (n * sumX2 – sumX * sumX); if (denominator === 0) { resultDiv.innerHTML = "Cannot calculate linear regression: All X values are identical. This would result in a vertical line, which cannot be represented by y = ax + b."; return; } var slopeB = (n * sumXY – sumX * sumY) / denominator; var interceptA = (sumY – slopeB * sumX) / n; // Round to a reasonable number of decimal places slopeB = parseFloat(slopeB.toFixed(4)); interceptA = parseFloat(interceptA.toFixed(4)); var regressionEquation = "Y = " + interceptA + " + " + slopeB + "X"; resultDiv.innerHTML = "Linear Regression Results:" + "Slope (b): " + slopeB + "" + "Y-intercept (a): " + interceptA + "" + "Regression Equation: " + regressionEquation + ""; }

Leave a Reply

Your email address will not be published. Required fields are marked *