Matrix Basis Calculator

Matrix Basis Calculator body { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; line-height: 1.6; color: #333; max-width: 800px; margin: 0 auto; padding: 20px; } .calculator-wrapper { background: #f9f9f9; border: 1px solid #e0e0e0; border-radius: 8px; padding: 25px; margin-bottom: 40px; box-shadow: 0 2px 5px rgba(0,0,0,0.05); } .controls-container { display: flex; gap: 20px; margin-bottom: 20px; align-items: flex-end; } .input-group { display: flex; flex-direction: column; } .input-group label { font-weight: 600; margin-bottom: 5px; font-size: 0.9em; color: #555; } .input-group input { padding: 8px; border: 1px solid #ccc; border-radius: 4px; font-size: 16px; width: 80px; } button.primary-btn { background-color: #0073aa; color: white; border: none; padding: 10px 20px; border-radius: 4px; cursor: pointer; font-size: 16px; font-weight: 600; transition: background-color 0.2s; } button.primary-btn:hover { background-color: #005177; } button.secondary-btn { background-color: #ffffff; color: #0073aa; border: 1px solid #0073aa; padding: 8px 15px; border-radius: 4px; cursor: pointer; font-size: 14px; margin-left: 10px; } button.secondary-btn:hover { background-color: #f0f8ff; } #matrix-container { overflow-x: auto; padding: 10px 0; margin-bottom: 20px; } .matrix-row { display: flex; gap: 10px; margin-bottom: 10px; justify-content: center; } .matrix-cell { width: 60px; padding: 8px; text-align: center; border: 1px solid #bbb; border-radius: 4px; } .result-box { background: #fff; border: 1px solid #ddd; border-left: 4px solid #0073aa; padding: 20px; margin-top: 20px; display: none; } .result-header { font-size: 1.2em; font-weight: bold; margin-bottom: 15px; color: #2c3e50; } .vector-display { font-family: 'Courier New', Courier, monospace; background: #f4f4f4; padding: 10px; margin-bottom: 10px; border-radius: 4px; display: inline-block; margin-right: 15px; vertical-align: top; } .basis-set { display: flex; flex-wrap: wrap; gap: 10px; } .metric-row { margin-top: 15px; font-size: 0.95em; border-top: 1px solid #eee; padding-top: 10px; } .error-msg { color: #d63638; font-weight: bold; display: none; margin-bottom: 15px; } h2 { margin-top: 40px; color: #23282d; } h3 { color: #23282d; } p { margin-bottom: 15px; } ul { margin-bottom: 20px; } .matrix-bracket { display: flex; align-items: center; } .matrix-bracket:before, .matrix-bracket:after { content: ""; display: block; width: 10px; border: 2px solid #333; border-right: none; height: 100%; } .matrix-bracket:after { border-left: none; border-right: 2px solid #333; }
Calculation Results

Dimension (Rank):

Basis for Column Space:

// Initialize with default 3×4 matrix window.onload = function() { generateMatrixInput(); }; function generateMatrixInput() { var rows = parseInt(document.getElementById('rows-input').value); var cols = parseInt(document.getElementById('cols-input').value); var container = document.getElementById('matrix-container'); if (isNaN(rows) || isNaN(cols) || rows < 1 || cols < 1) { alert("Please enter valid positive integers for dimensions."); return; } var html = ''; for (var i = 0; i < rows; i++) { html += '
'; for (var j = 0; j < cols; j++) { // Default values for a simple example (Rank 2) var val = 0; if (i === j) val = 1; if (j === 3) val = i + 1; // 4th column linear combo html += ''; } html += '
'; } container.innerHTML = html; document.getElementById('result-output').style.display = 'none'; document.getElementById('error-message').style.display = 'none'; } function calculateMatrixBasis() { var rows = parseInt(document.getElementById('rows-input').value); var cols = parseInt(document.getElementById('cols-input').value); var matrix = []; var originalMatrix = []; // 1. Read Matrix Data for (var i = 0; i < rows; i++) { var row = []; var origRow = []; for (var j = 0; j < cols; j++) { var cellId = 'cell-' + i + '-' + j; var val = parseFloat(document.getElementById(cellId).value); if (isNaN(val)) { document.getElementById('error-message').innerText = "Invalid input at Row " + (i+1) + ", Col " + (j+1); document.getElementById('error-message').style.display = 'block'; return; } row.push(val); origRow.push(val); } matrix.push(row); originalMatrix.push(origRow); } // 2. Gaussian Elimination to find Pivot Columns (RREF) var pivotCols = []; var lead = 0; for (var r = 0; r < rows; r++) { if (cols <= lead) break; var i = r; // Find pivot while (Math.abs(matrix[i][lead]) < 1e-10) { i++; if (i === rows) { i = r; lead++; if (cols === lead) break; } } if (cols <= lead) break; // Should be covered above, but safe check // Swap rows var temp = matrix[i]; matrix[i] = matrix[r]; matrix[r] = temp; // Store pivot column index pivotCols.push(lead); // Normalize row var val = matrix[r][lead]; for (var j = 0; j < cols; j++) { matrix[r][j] /= val; } // Eliminate other rows for (var i = 0; i < rows; i++) { if (i === r) continue; val = matrix[i][lead]; for (var j = 0; j < cols; j++) { matrix[i][j] -= val * matrix[r][j]; } } lead++; } // 3. Display Results var resultContainer = document.getElementById('basis-vectors'); resultContainer.innerHTML = ''; if (pivotCols.length === 0) { document.getElementById('rank-result').innerText = "0 (Zero Matrix)"; resultContainer.innerHTML = "No basis (only the zero vector)"; } else { document.getElementById('rank-result').innerText = pivotCols.length; // Extract basis vectors from ORIGINAL matrix based on pivot indices for (var k = 0; k < pivotCols.length; k++) { var colIndex = pivotCols[k]; var vectorHtml = '
'; vectorHtml += 'v' + (k+1) + ' = ['; var components = []; for (var r = 0; r < rows; r++) { // Format output to avoid ugly floats like 3.0000000004 var val = originalMatrix[r][colIndex]; var displayVal = Math.abs(Math.round(val) – val) < 1e-10 ? Math.round(val) : val.toFixed(4); components.push(displayVal); } vectorHtml += components.join(', ') + ']T
'; resultContainer.innerHTML += vectorHtml; } } document.getElementById('result-output').style.display = 'block'; document.getElementById('error-message').style.display = 'none'; }

Understanding Matrix Basis and Linear Algebra

In linear algebra, determining the basis of a matrix is a fundamental operation used to understand the structure of the vector space spanned by the matrix's columns (the Column Space). This Matrix Basis Calculator allows you to input vectors in matrix form and automatically identifies the linearly independent vectors that form a basis for that space.

What is a Basis?

A basis for a vector space is a set of vectors that satisfies two critical conditions:

  • Linear Independence: No vector in the set can be written as a linear combination of the others.
  • Spanning: Every vector in the space can be written as a linear combination of the basis vectors.

When dealing with a matrix, the "Column Space" is the set of all possible linear combinations of its column vectors. Often, a matrix contains redundant information—vectors that are just combinations of other vectors. Finding a basis helps us simplify the dataset to its essential components.

How the Calculator Works

This tool utilizes Gaussian Elimination to convert the input matrix into Reduced Row Echelon Form (RREF). Here is the logic behind the calculation:

  1. Input: You define an $m \times n$ matrix where each column represents a vector in $\mathbb{R}^m$.
  2. Reduction: The calculator performs row operations to identify "pivot" positions. A pivot is the first non-zero entry in a row after reduction.
  3. Identification: The columns in the Reduced Row Echelon form that contain pivots correspond to the linearly independent columns in the original matrix.
  4. Result: The calculator extracts these specific columns from your original input. These form the Basis for the Column Space.

Rank and Dimension

The calculator also outputs the Rank of the matrix. The rank is simply the number of vectors in the basis. It tells you the dimension of the column space.

  • If Rank = Number of Columns, the vectors are all linearly independent.
  • If Rank < Number of Columns, the vectors are linearly dependent (some are redundant).

Example Calculation

Consider a matrix with columns $v_1 = [1, 2, 3]^T$, $v_2 = [2, 4, 6]^T$, and $v_3 = [0, 1, 1]^T$.

Notice that $v_2$ is exactly $2 \times v_1$. Therefore, $v_2$ is redundant. The calculator will identify that the pivot columns are 1 and 3. It will return $\{v_1, v_3\}$ as the basis, and calculate a Rank of 2.

Applications

Finding a basis is essential in fields such as:

  • Data Compression: Reducing dimensions by keeping only essential features (Principal Component Analysis).
  • Solving Systems of Equations: Determining if a solution exists and if it is unique.
  • Physics and Engineering: Analyzing forces and states in mechanical systems where redundant constraints exist.

Leave a Reply

Your email address will not be published. Required fields are marked *