Multiplication of Matrices Calculator

Matrix Multiplication Calculator

Matrix A Dimensions

Matrix B Dimensions

Matrix A

Matrix B

Resulting Matrix C (A x B)

.calculator-container { font-family: Arial, sans-serif; max-width: 800px; margin: 20px auto; padding: 20px; border: 1px solid #ccc; border-radius: 8px; background-color: #f9f9f9; } .input-section, .result-section { margin-bottom: 15px; padding: 10px; border: 1px solid #eee; border-radius: 5px; background-color: #fff; } .input-section label { margin-right: 5px; font-weight: bold; } .input-section input[type="number"] { width: 60px; padding: 5px; margin-right: 15px; border: 1px solid #ddd; border-radius: 4px; } button { padding: 10px 15px; background-color: #007bff; color: white; border: none; border-radius: 5px; cursor: pointer; font-size: 16px; margin-top: 10px; } button:hover { background-color: #0056b3; } .matrix-input-container { display: flex; justify-content: space-around; margin-top: 20px; flex-wrap: wrap; } .matrix-box { flex: 1; min-width: 300px; margin: 10px; padding: 15px; border: 1px solid #ddd; border-radius: 5px; background-color: #fff; } .matrix-box h3 { margin-top: 0; text-align: center; } .matrix-grid { display: grid; gap: 5px; margin-top: 10px; } .matrix-grid input { width: 50px; padding: 5px; border: 1px solid #ccc; border-radius: 4px; text-align: center; } .matrix-cell { padding: 8px; border: 1px solid #eee; text-align: center; background-color: #f0f0f0; border-radius: 4px; } #resultMatrix { margin-top: 15px; border: 1px solid #ccc; padding: 10px; background-color: #e9ecef; border-radius: 5px; } function clearResults() { document.getElementById("errorMessage").innerHTML = ""; document.getElementById("matrixAInputs").innerHTML = ""; document.getElementById("matrixBInputs").innerHTML = ""; document.getElementById("resultMatrix").innerHTML = ""; } function generateMatrixInputs() { clearResults(); var matrixARows = parseInt(document.getElementById("matrixARows").value); var matrixACols = parseInt(document.getElementById("matrixACols").value); var matrixBRows = parseInt(document.getElementById("matrixBRows").value); var matrixBCols = parseInt(document.getElementById("matrixBCols").value); var errorMessage = document.getElementById("errorMessage"); errorMessage.innerHTML = ""; if (isNaN(matrixARows) || isNaN(matrixACols) || isNaN(matrixBRows) || isNaN(matrixBCols) || matrixARows <= 0 || matrixACols <= 0 || matrixBRows <= 0 || matrixBCols <= 0) { errorMessage.innerHTML = "Please enter valid positive integer dimensions for all matrices."; return; } if (matrixACols !== matrixBRows) { errorMessage.innerHTML = "Error: For matrix multiplication (A x B), the number of columns in Matrix A must equal the number of rows in Matrix B."; return; } var matrixAInputsDiv = document.getElementById("matrixAInputs"); var matrixBInputsDiv = document.getElementById("matrixBInputs"); matrixAInputsDiv.innerHTML = ""; matrixBInputsDiv.innerHTML = ""; matrixAInputsDiv.style.gridTemplateColumns = "repeat(" + matrixACols + ", auto)"; matrixBInputsDiv.style.gridTemplateColumns = "repeat(" + matrixBCols + ", auto)"; for (var i = 0; i < matrixARows; i++) { for (var j = 0; j < matrixACols; j++) { var input = document.createElement("input"); input.type = "number"; input.id = "matrixA_" + i + "_" + j; input.value = "0"; matrixAInputsDiv.appendChild(input); } } for (var i = 0; i < matrixBRows; i++) { for (var j = 0; j < matrixBCols; j++) { var input = document.createElement("input"); input.type = "number"; input.id = "matrixB_" + i + "_" + j; input.value = "0"; matrixBInputsDiv.appendChild(input); } } } function calculateMatrixMultiplication() { var errorMessage = document.getElementById("errorMessage"); errorMessage.innerHTML = ""; document.getElementById("resultMatrix").innerHTML = ""; var matrixARows = parseInt(document.getElementById("matrixARows").value); var matrixACols = parseInt(document.getElementById("matrixACols").value); var matrixBRows = parseInt(document.getElementById("matrixBRows").value); var matrixBCols = parseInt(document.getElementById("matrixBCols").value); if (isNaN(matrixARows) || isNaN(matrixACols) || isNaN(matrixBRows) || isNaN(matrixBCols) || matrixARows <= 0 || matrixACols <= 0 || matrixBRows <= 0 || matrixBCols <= 0) { errorMessage.innerHTML = "Please generate matrix input fields first with valid dimensions."; return; } if (matrixACols !== matrixBRows) { errorMessage.innerHTML = "Error: Matrix A columns must equal Matrix B rows for multiplication."; return; } var matrixA = []; var matrixB = []; for (var i = 0; i < matrixARows; i++) { matrixA[i] = []; for (var j = 0; j < matrixACols; j++) { var inputElement = document.getElementById("matrixA_" + i + "_" + j); if (!inputElement) { errorMessage.innerHTML = "Matrix A input fields not generated or missing. Click 'Generate Matrix Input Fields'."; return; } var value = parseFloat(inputElement.value); if (isNaN(value)) { errorMessage.innerHTML = "Please enter valid numbers for all elements in Matrix A."; return; } matrixA[i][j] = value; } } for (var i = 0; i < matrixBRows; i++) { matrixB[i] = []; for (var j = 0; j < matrixBCols; j++) { var inputElement = document.getElementById("matrixB_" + i + "_" + j); if (!inputElement) { errorMessage.innerHTML = "Matrix B input fields not generated or missing. Click 'Generate Matrix Input Fields'."; return; } var value = parseFloat(inputElement.value); if (isNaN(value)) { errorMessage.innerHTML = "Please enter valid numbers for all elements in Matrix B."; return; } matrixB[i][j] = value; } } var resultMatrix = []; for (var i = 0; i < matrixARows; i++) { resultMatrix[i] = []; for (var j = 0; j < matrixBCols; j++) { var sum = 0; for (var k = 0; k < matrixACols; k++) { sum += matrixA[i][k] * matrixB[k][j]; } resultMatrix[i][j] = sum; } } var resultMatrixDiv = document.getElementById("resultMatrix"); resultMatrixDiv.innerHTML = ""; resultMatrixDiv.style.gridTemplateColumns = "repeat(" + matrixBCols + ", auto)"; for (var i = 0; i < matrixARows; i++) { for (var j = 0; j < matrixBCols; j++) { var cell = document.createElement("div"); cell.className = "matrix-cell"; cell.textContent = resultMatrix[i][j].toFixed(4); resultMatrixDiv.appendChild(cell); } } } window.onload = function() { generateMatrixInputs(); };

Understanding Matrix Multiplication

Matrix multiplication is a fundamental operation in linear algebra with wide-ranging applications in mathematics, physics, engineering, computer graphics, and data science. Unlike scalar multiplication (where you multiply each element by a single number), matrix multiplication involves a more complex process that combines rows from the first matrix with columns from the second matrix.

What is a Matrix?

A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. For example, a 2×3 matrix has 2 rows and 3 columns:

    A = [ a₁₁  a₁₂  a₁₃ ]
        [ a₂₁  a₂₂  a₂₃ ]
    

Rules for Matrix Multiplication

For two matrices, A and B, to be multiplied to form a product matrix C (i.e., C = A x B), a crucial condition must be met:

  • The number of columns in the first matrix (A) must be equal to the number of rows in the second matrix (B).

If Matrix A has dimensions (m x n) and Matrix B has dimensions (n x p), then the resulting Matrix C will have dimensions (m x p). The 'n' must match.

If the dimensions do not match this rule, matrix multiplication is undefined.

How to Multiply Matrices

Let's say Matrix A is an (m x n) matrix and Matrix B is an (n x p) matrix. The element in the i-th row and j-th column of the product matrix C, denoted as Cij, is calculated by taking the dot product of the i-th row of A and the j-th column of B.

The formula for each element Cij is:

    Cij = Σ (Aik * Bkj)  for k = 0 to n-1
    

In simpler terms, to find Cij:

  1. Take the i-th row of Matrix A.
  2. Take the j-th column of Matrix B.
  3. Multiply the first element of the row by the first element of the column, the second by the second, and so on.
  4. Sum up all these products.

Example Calculation

Let's multiply Matrix A (2×2) by Matrix B (2×2):

    A = [ 1  2 ]      B = [ 5  6 ]
        [ 3  4 ]          [ 7  8 ]
    

Here, Matrix A has 2 columns, and Matrix B has 2 rows, so multiplication is possible. The resulting matrix C will be 2×2.

Calculate C11 (first row, first column of C):

  • (1 * 5) + (2 * 7) = 5 + 14 = 19

Calculate C12 (first row, second column of C):

  • (1 * 6) + (2 * 8) = 6 + 16 = 22

Calculate C21 (second row, first column of C):

  • (3 * 5) + (4 * 7) = 15 + 28 = 43

Calculate C22 (second row, second column of C):

  • (3 * 6) + (4 * 8) = 18 + 32 = 50

So, the product matrix C is:

    C = [ 19  22 ]
        [ 43  50 ]
    

Applications of Matrix Multiplication

Matrix multiplication is not just a theoretical concept; it has practical applications in many fields:

  • Computer Graphics: Used for transformations like rotation, scaling, and translation of 3D objects.
  • Physics and Engineering: Solving systems of linear equations, quantum mechanics, structural analysis.
  • Data Science and Machine Learning: Core operation in neural networks, principal component analysis (PCA), and various algorithms.
  • Economics: Modeling economic systems and input-output analysis.
  • Cryptography: Encoding and decoding messages.

This calculator simplifies the process of multiplying matrices, allowing you to quickly verify results or explore different matrix combinations without manual calculation.

Leave a Reply

Your email address will not be published. Required fields are marked *