Power Calculation Formula for 3 Phase

.p3-calc-box { background: #f8f9fa; border: 1px solid #e9ecef; border-radius: 8px; padding: 30px; margin-bottom: 40px; box-shadow: 0 4px 6px rgba(0,0,0,0.05); } .p3-input-group { margin-bottom: 20px; } .p3-label { display: block; margin-bottom: 8px; font-weight: 600; color: #2c3e50; } .p3-input { width: 100%; padding: 12px; border: 1px solid #ced4da; border-radius: 4px; font-size: 16px; box-sizing: border-box; } .p3-input:focus { border-color: #007bff; outline: none; box-shadow: 0 0 0 3px rgba(0,123,255,0.1); } .p3-btn { background-color: #007bff; color: white; border: none; padding: 14px 24px; font-size: 16px; font-weight: 600; border-radius: 4px; cursor: pointer; width: 100%; transition: background-color 0.2s; } .p3-btn:hover { background-color: #0056b3; } .p3-results { margin-top: 25px; padding-top: 20px; border-top: 2px solid #e9ecef; display: none; } .p3-result-item { background: #fff; padding: 15px; border-radius: 4px; border-left: 5px solid #28a745; margin-bottom: 10px; display: flex; justify-content: space-between; align-items: center; box-shadow: 0 2px 4px rgba(0,0,0,0.05); } .p3-result-label { font-size: 14px; color: #6c757d; font-weight: 500; } .p3-result-value { font-size: 20px; font-weight: 700; color: #2c3e50; } .p3-error { color: #dc3545; font-size: 14px; margin-top: 5px; display: none; } .p3-article h2 { color: #2c3e50; border-bottom: 2px solid #007bff; padding-bottom: 10px; margin-top: 30px; } .p3-article p { line-height: 1.6; margin-bottom: 15px; } .p3-article ul { margin-bottom: 20px; padding-left: 20px; } .p3-article li { margin-bottom: 8px; line-height: 1.5; } .formula-box { background: #e8f4fd; padding: 15px; border-radius: 4px; font-family: monospace; margin: 15px 0; border-left: 4px solid #007bff; }

3-Phase Power Calculator

Enter voltage in Volts (V)
Enter current in Amperes (A)
Value between 0.0 and 1.0
Please enter valid numerical values. Power Factor must be between 0 and 1.
Active Power (Real Power): 0.00 kW
Apparent Power: 0.00 kVA
Reactive Power: 0.00 kVAR
Current (Amps): 0.00 A
function calculateThreePhasePower() { var voltageInput = document.getElementById('p3_voltage'); var currentInput = document.getElementById('p3_current'); var pfInput = document.getElementById('p3_pf'); var errorMsg = document.getElementById('p3_error_msg'); var resultsContainer = document.getElementById('p3_results_container'); var volts = parseFloat(voltageInput.value); var amps = parseFloat(currentInput.value); var pf = parseFloat(pfInput.value); // Validation if (isNaN(volts) || isNaN(amps) || isNaN(pf) || volts <= 0 || amps <= 0) { errorMsg.style.display = 'block'; resultsContainer.style.display = 'none'; return; } if (pf 1) { errorMsg.textContent = "Power Factor must be between 0 and 1."; errorMsg.style.display = 'block'; resultsContainer.style.display = 'none'; return; } errorMsg.style.display = 'none'; // Constants var sqrt3 = Math.sqrt(3); // Approx 1.732 // Calculations // 1. Apparent Power (S) in kVA = (sqrt3 * V * I) / 1000 var apparentPowerKVA = (sqrt3 * volts * amps) / 1000; // 2. Active Power (P) in kW = S * PF var activePowerKW = apparentPowerKVA * pf; // 3. Reactive Power (Q) in kVAR = S * sin(acos(PF)) // Calculate phase angle theta var theta = Math.acos(pf); var sinTheta = Math.sin(theta); var reactivePowerKVAR = apparentPowerKVA * sinTheta; // Update UI document.getElementById('res_kw').textContent = activePowerKW.toFixed(2) + " kW"; document.getElementById('res_kva').textContent = apparentPowerKVA.toFixed(2) + " kVA"; document.getElementById('res_kvar').textContent = reactivePowerKVAR.toFixed(2) + " kVAR"; document.getElementById('res_amps_disp').textContent = amps.toFixed(2) + " A"; resultsContainer.style.display = 'block'; }

Understanding the Power Calculation Formula for 3-Phase Systems

In industrial and heavy commercial electrical systems, three-phase power is the standard method for transmitting and distributing alternating current (AC). Unlike single-phase systems found in residential homes, three-phase systems provide more consistent power delivery and allow for the use of smaller wires for the same load.

Calculating the power in a three-phase circuit requires specific formulas that account for the three distinct alternating currents and the square root of 3 ($\sqrt{3} \approx 1.732$).

The Core Formulas

Depending on whether you need to calculate Real Power, Apparent Power, or Reactive Power, the formulas differ slightly. The standard calculations assume a balanced load and use Line-to-Line voltage ($V_{LL}$).

1. Active (Real) Power ($P$)

Active power is the actual power consumed by the equipment to do useful work (like turning a motor or heating an element). It is measured in Kilowatts (kW).

P (kW) = ($\sqrt{3} \times V \times I \times PF$) / 1000

2. Apparent Power ($S$)

Apparent power is the vector sum of active and reactive power. It represents the total power supplied to the circuit. It is measured in Kilovolt-Amperes (kVA).

S (kVA) = ($\sqrt{3} \times V \times I$) / 1000

3. Reactive Power ($Q$)

Reactive power is the power that oscillates between the source and the load, used to maintain magnetic fields in inductive loads like motors. It is measured in Kilovolt-Amperes Reactive (kVAR).

Q (kVAR) = ($\sqrt{3} \times V \times I \times \sin(\theta)$) / 1000

Key Variables Explained

  • Voltage ($V$): This is typically the Line-to-Line voltage (e.g., 400V, 480V). If you only have Line-to-Neutral voltage, multiply it by $\sqrt{3}$ to get Line-to-Line.
  • Current ($I$): The current flowing through the lines, measured in Amperes.
  • Power Factor ($PF$): A measure of efficiency, ranging from 0 to 1. Resistive loads (heaters) have a PF of 1.0, while inductive loads (motors) typically have a PF between 0.8 and 0.9.
  • $\sqrt{3}$ (Square Root of 3): A constant approximately equal to 1.732. It arises from the geometry of the three phases being offset by 120 degrees.

Example Calculation

Let's say you have a 3-phase motor running on a 480V system drawing 50 Amps with a power factor of 0.85.

  1. Calculate kVA: $1.732 \times 480 \times 50 = 41,568 \text{ VA} = 41.57 \text{ kVA}$.
  2. Calculate kW: $41.57 \text{ kVA} \times 0.85 = 35.33 \text{ kW}$.

This means while the utility must supply 41.57 kVA of capacity, the motor is only performing 35.33 kW of useful work.

Leave a Reply

Your email address will not be published. Required fields are marked *