Q R Decomposition Calculator

QR Decomposition Calculator body { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; line-height: 1.6; color: #333; max-width: 800px; margin: 0 auto; padding: 20px; } .calculator-wrapper { background: #f9f9f9; border: 1px solid #e1e1e1; border-radius: 8px; padding: 30px; margin-bottom: 40px; box-shadow: 0 4px 6px rgba(0,0,0,0.05); } .calculator-title { text-align: center; margin-bottom: 25px; color: #2c3e50; } .matrix-input-section { display: flex; justify-content: center; margin-bottom: 20px; } .matrix-grid { display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; background: #fff; padding: 15px; border-radius: 8px; border: 2px solid #333; position: relative; } .matrix-grid::before, .matrix-grid::after { content: ""; position: absolute; top: -2px; bottom: -2px; width: 10px; border: 2px solid #333; } .matrix-grid::before { left: -2px; border-right: none; } .matrix-grid::after { right: -2px; border-left: none; } .matrix-input { width: 60px; height: 40px; text-align: center; border: 1px solid #ccc; border-radius: 4px; font-size: 16px; } .calc-btn { display: block; width: 100%; background-color: #3498db; color: white; border: none; padding: 15px; font-size: 18px; font-weight: bold; border-radius: 5px; cursor: pointer; transition: background-color 0.3s; margin-top: 20px; } .calc-btn:hover { background-color: #2980b9; } .results-container { margin-top: 30px; display: none; border-top: 1px solid #eee; padding-top: 20px; } .matrix-display { display: flex; flex-wrap: wrap; justify-content: space-around; gap: 20px; } .matrix-box { text-align: center; } .matrix-box h4 { margin-bottom: 10px; } .result-table { border-collapse: collapse; margin: 0 auto; border-left: 2px solid #333; border-right: 2px solid #333; padding: 5px; } .result-table td { padding: 8px 12px; text-align: right; font-family: monospace; } .error-msg { color: #e74c3c; text-align: center; margin-top: 10px; font-weight: bold; } article h2 { color: #2c3e50; border-bottom: 2px solid #3498db; padding-bottom: 10px; margin-top: 40px; } article p { margin-bottom: 15px; } .formula-box { background: #eee; padding: 15px; border-left: 4px solid #3498db; font-family: monospace; margin: 20px 0; }

QR Decomposition Calculator (3×3 Matrix)

Enter the coefficients for Matrix A:

Results

Matrix Q (Orthogonal)

Matrix R (Upper Triangular)

Verification (Q × R ≈ A):

function calculateQR() { // Clear previous errors and results document.getElementById('error-message').innerHTML = "; document.getElementById('results').style.display = 'none'; // 1. Get Input Values var a11 = parseFloat(document.getElementById('a11').value); var a12 = parseFloat(document.getElementById('a12').value); var a13 = parseFloat(document.getElementById('a13').value); var a21 = parseFloat(document.getElementById('a21').value); var a22 = parseFloat(document.getElementById('a22').value); var a23 = parseFloat(document.getElementById('a23').value); var a31 = parseFloat(document.getElementById('a31').value); var a32 = parseFloat(document.getElementById('a32').value); var a33 = parseFloat(document.getElementById('a33').value); // Validation if (isNaN(a11) || isNaN(a12) || isNaN(a13) || isNaN(a21) || isNaN(a22) || isNaN(a23) || isNaN(a31) || isNaN(a32) || isNaN(a33)) { document.getElementById('error-message').innerText = "Please fill in all matrix cells with valid numbers."; return; } // Define Columns of A as vectors var v1 = [a11, a21, a31]; var v2 = [a12, a22, a32]; var v3 = [a13, a23, a33]; // 2. Gram-Schmidt Process // — Step 1: u1 = v1 — var u1 = v1; var magU1 = Math.sqrt(u1[0]*u1[0] + u1[1]*u1[1] + u1[2]*u1[2]); if (magU1 === 0) { document.getElementById('error-message').innerText = "Matrix is singular or column vectors are linearly dependent (First column is zero)."; return; } // e1 = u1 / ||u1|| var e1 = [u1[0]/magU1, u1[1]/magU1, u1[2]/magU1]; // — Step 2: u2 = v2 – proj_u1(v2) — // Ideally use e1 for simpler calculation: u2 = v2 – (v2 . e1) * e1 var dotV2E1 = v2[0]*e1[0] + v2[1]*e1[1] + v2[2]*e1[2]; var u2 = [ v2[0] – dotV2E1 * e1[0], v2[1] – dotV2E1 * e1[1], v2[2] – dotV2E1 * e1[2] ]; var magU2 = Math.sqrt(u2[0]*u2[0] + u2[1]*u2[1] + u2[2]*u2[2]); // Check linear dependence if (magU2 < 1e-10) { document.getElementById('error-message').innerText = "Columns are linearly dependent. QR Decomposition requires linearly independent columns for unique results."; return; } var e2 = [u2[0]/magU2, u2[1]/magU2, u2[2]/magU2]; // — Step 3: u3 = v3 – proj_u1(v3) – proj_u2(v3) — // u3 = v3 – (v3 . e1)e1 – (v3 . e2)e2 var dotV3E1 = v3[0]*e1[0] + v3[1]*e1[1] + v3[2]*e1[2]; var dotV3E2 = v3[0]*e2[0] + v3[1]*e2[1] + v3[2]*e2[2]; var u3 = [ v3[0] – (dotV3E1 * e1[0]) – (dotV3E2 * e2[0]), v3[1] – (dotV3E1 * e1[1]) – (dotV3E2 * e2[1]), v3[2] – (dotV3E1 * e1[2]) – (dotV3E2 * e2[2]) ]; var magU3 = Math.sqrt(u3[0]*u3[0] + u3[1]*u3[1] + u3[2]*u3[2]); if (magU3 < 1e-10) { document.getElementById('error-message').innerText = "Columns are linearly dependent."; return; } var e3 = [u3[0]/magU3, u3[1]/magU3, u3[2]/magU3]; // 3. Construct Matrix Q // Columns of Q are e1, e2, e3 var Q = [ [e1[0], e2[0], e3[0]], [e1[1], e2[1], e3[1]], [e1[2], e2[2], e3[2]] ]; // 4. Construct Matrix R // R is upper triangular. R_ij = e_i . v_j // R11 = e1 . v1, R12 = e1 . v2, R13 = e1 . v3 // R21 = 0, R22 = e2 . v2, R23 = e2 . v3 // R31 = 0, R32 = 0, R33 = e3 . v3 var r11 = v1[0]*e1[0] + v1[1]*e1[1] + v1[2]*e1[2]; var r12 = v2[0]*e1[0] + v2[1]*e1[1] + v2[2]*e1[2]; var r13 = v3[0]*e1[0] + v3[1]*e1[1] + v3[2]*e1[2]; var r22 = v2[0]*e2[0] + v2[1]*e2[1] + v2[2]*e2[2]; var r23 = v3[0]*e2[0] + v3[1]*e2[1] + v3[2]*e2[2]; var r33 = v3[0]*e3[0] + v3[1]*e3[1] + v3[2]*e3[2]; var R = [ [r11, r12, r13], [0, r22, r23], [0, 0, r33] ]; // 5. Verification (Check = Q * R) var check = [ [0,0,0], [0,0,0], [0,0,0] ]; for(var i=0; i<3; i++) { for(var j=0; j<3; j++) { var sum = 0; for(var k=0; k<3; k++) { sum += Q[i][k] * R[k][j]; } check[i][j] = sum; } } // 6. Display Results function renderMatrix(matrix, elementId) { var html = ''; for(var row=0; row<3; row++) { html += ''; for(var col=0; col<3; col++) { // Handle small floating point errors near zero var val = matrix[row][col]; if(Math.abs(val) < 1e-10) val = 0; html += '' + val.toFixed(4) + ''; } html += ''; } document.getElementById(elementId).innerHTML = html; } renderMatrix(Q, 'matrixQ'); renderMatrix(R, 'matrixR'); renderMatrix(check, 'matrixCheck'); document.getElementById('results').style.display = 'block'; }

What is QR Decomposition?

QR Decomposition (also known as QR factorization) is a fundamental linear algebra operation that factors a matrix A into a product A = QR of two specific matrices:

  • Q: An orthogonal matrix (meaning its columns are orthogonal unit vectors, and $Q^T = Q^{-1}$).
  • R: An upper triangular matrix (all entries below the main diagonal are zero).

This calculator specifically handles 3×3 square matrices, utilizing the Gram-Schmidt process to orthogonalize the columns of the input matrix.

How the Gram-Schmidt Process Works

To calculate the QR decomposition, we treat the columns of matrix A as vectors $(a_1, a_2, a_3)$. The goal is to create an orthonormal basis $(e_1, e_2, e_3)$ which forms the columns of Q.

Step 1:
$u_1 = a_1$
$e_1 = \frac{u_1}{||u_1||}$
Step 2:
$u_2 = a_2 – \text{proj}_{u_1}(a_2)$
$e_2 = \frac{u_2}{||u_2||}$
Step 3:
$u_3 = a_3 – \text{proj}_{u_1}(a_3) – \text{proj}_{u_2}(a_3)$
$e_3 = \frac{u_3}{||u_3||}$

Once the orthogonal matrix Q is found, the upper triangular matrix R is calculated by projecting the original columns of A onto the new basis vectors. The entry $R_{ij}$ is the dot product of $e_i$ and $a_j$.

Applications of QR Decomposition

QR decomposition is widely used in numerical linear algebra for several critical tasks:

  1. Solving Linear Systems: It helps solve systems of linear equations ($Ax = b$) more numerically stably than Gaussian elimination in certain cases.
  2. Least Squares Problems: It is the standard method for solving linear least squares problems, often used in regression analysis and data fitting.
  3. Eigenvalues: It is the basis of the QR algorithm, an iterative method used to calculate the eigenvalues and eigenvectors of a matrix.

Understanding the Results

When you use the calculator above, you will see:

  • Matrix Q: Look for the property that the dot product of any two distinct columns is zero, and the magnitude of each column is 1.
  • Matrix R: You will notice zeros in the bottom-left corner ($r_{21}, r_{31}, r_{32}$), confirming the upper triangular structure.
  • Verification: The product of Q and R should reconstruct your original Matrix A (within floating-point rounding errors).

Leave a Reply

Your email address will not be published. Required fields are marked *