Reduced Row Echelon Calculator

Reduced Row Echelon Form (RREF) Calculator

Enter the coefficients of your matrix below. This calculator supports a 3×4 matrix, suitable for solving systems of 3 linear equations with 3 variables (e.g., Ax + By + Cz = D).

|
|
|

Resulting Reduced Row Echelon Form:

.calculator-container { font-family: Arial, sans-serif; max-width: 700px; margin: 20px auto; padding: 20px; border: 1px solid #ccc; border-radius: 8px; background-color: #f9f9f9; } .calculator-container h2, .calculator-container h3 { color: #333; text-align: center; } .matrix-input-grid, .matrix-output-grid { display: flex; flex-direction: column; margin-bottom: 20px; border: 1px solid #eee; padding: 10px; background-color: #fff; border-radius: 5px; } .matrix-row { display: flex; justify-content: center; margin-bottom: 5px; } .matrix-row input { width: 60px; padding: 8px; margin: 0 5px; border: 1px solid #ddd; border-radius: 4px; text-align: center; font-size: 1em; } .matrix-row .separator { font-weight: bold; font-size: 1.2em; margin: 0 5px; display: flex; align-items: center; } .matrix-output-grid .matrix-row div { width: 60px; padding: 8px; margin: 0 5px; border: 1px solid #eee; /* Lighter border for output */ border-radius: 4px; text-align: center; font-size: 1em; background-color: #e9e9e9; } button { display: block; width: 100%; padding: 10px 15px; background-color: #007bff; color: white; border: none; border-radius: 5px; font-size: 1.1em; cursor: pointer; transition: background-color 0.3s ease; } button:hover { background-color: #0056b3; } #result { margin-top: 20px; padding: 15px; background-color: #e9f7ef; border: 1px solid #d4edda; border-radius: 5px; min-height: 50px; display: flex; flex-direction: column; align-items: center; justify-content: center; } #result p { font-size: 1.1em; font-weight: bold; color: #28a745; } .error-message { color: red; font-weight: bold; text-align: center; margin-top: 10px; } function calculateRREF() { var matrix = []; var rows = 3; var cols = 4; var i, j, k, lead, pivot, val; var resultDiv = document.getElementById("result"); resultDiv.innerHTML = ""; // Clear previous results // Read matrix values from input fields for (i = 0; i < rows; i++) { matrix[i] = []; for (j = 0; j < cols; j++) { var inputId = "m" + i + j; val = parseFloat(document.getElementById(inputId).value); if (isNaN(val)) { resultDiv.innerHTML = "Error: Please enter valid numbers in all matrix fields."; return; } matrix[i][j] = val; } } // RREF Algorithm (Gauss-Jordan Elimination) lead = 0; for (i = 0; i = cols) { break; } j = i; while (j < rows && Math.abs(matrix[j][lead]) < 1e-9) { // Use a small epsilon for zero check j++; } if (j < rows) { // Swap rows i and j var temp = matrix[i]; matrix[i] = matrix[j]; matrix[j] = temp; // Divide row i by pivot to make matrix[i][lead] = 1 pivot = matrix[i][lead]; for (k = 0; k < cols; k++) { matrix[i][k] /= pivot; } // Eliminate other entries in the current column for (k = 0; k < rows; k++) { if (k !== i) { var factor = matrix[k][lead]; for (var l = 0; l < cols; l++) { matrix[k][l] -= factor * matrix[i][l]; } } } lead++; } else { // If all entries in the current column from row i downwards are zero, move to next column lead++; i–; // Re-evaluate current row with the new lead } } // Display the RREF matrix var outputHtml = ""; for (i = 0; i < rows; i++) { outputHtml += "
"; for (j = 0; j < cols; j++) { // Round to a reasonable number of decimal places to avoid floating point artifacts var displayVal = Math.round(matrix[i][j] * 1e6) / 1e6; outputHtml += "
" + displayVal + "
"; if (j === cols – 2) { // After the third column (index 2) for a 3×4 matrix outputHtml += "|"; } } outputHtml += "
"; } resultDiv.innerHTML = outputHtml; } // Run calculation on page load for initial values window.onload = calculateRREF;

Understanding Reduced Row Echelon Form (RREF)

The Reduced Row Echelon Form (RREF) is a standardized way to represent a matrix, particularly useful in linear algebra for solving systems of linear equations, finding the inverse of a matrix, and determining the rank of a matrix. It's the final output of the Gauss-Jordan elimination process.

Key Properties of RREF:

  1. All-zero rows are at the bottom: If a row consists entirely of zeros, it is at the bottom of the matrix.
  2. Leading 1s: The first non-zero entry in each non-zero row (called the "leading entry" or "pivot") is a 1.
  3. Staircase pattern: Each leading 1 is to the right of the leading 1 in the row above it.
  4. Zeroes above and below leading 1s: Each column that contains a leading 1 has zeros everywhere else in that column.

Why is RREF Important?

  • Solving Systems of Linear Equations: When an augmented matrix (a matrix representing a system of equations) is transformed into RREF, the solution to the system can be read directly from the matrix. For example, if the RREF is:
                    1  0  0 | 5
                    0  1  0 | 3
                    0  0  1 | 1
                    
    This directly translates to x=5, y=3, z=1.
  • Matrix Inversion: To find the inverse of a square matrix A, you can augment it with an identity matrix [A | I] and then apply Gauss-Jordan elimination to transform it into [I | A-1].
  • Determining Matrix Rank: The rank of a matrix is the number of non-zero rows in its RREF.
  • Basis for Vector Spaces: RREF helps in finding a basis for the row space, column space, and null space of a matrix.

How the Calculator Works (Briefly):

This calculator uses the Gauss-Jordan elimination method to transform your input matrix into its Reduced Row Echelon Form. The process involves a series of elementary row operations:

  1. Swapping two rows: To get a non-zero pivot element.
  2. Multiplying a row by a non-zero scalar: To make a leading entry equal to 1.
  3. Adding a multiple of one row to another row: To create zeros above and below the leading 1s.

These operations are applied systematically to achieve the RREF properties. The calculator handles a 3×4 matrix, which is common for systems of three linear equations with three variables.

Example Usage:

Consider the following system of linear equations:

        x + 2y -  z = -4
        2x + 3y - z = -11
        -2x + 0y - 3z = 22
        

This system can be represented by the augmented matrix:

        [ 1  2  -1 | -4 ]
        [ 2  3  -1 | -11 ]
        [ -2 0  -3 | 22 ]
        

Enter these values into the calculator's input fields. After clicking "Calculate RREF", the output will be:

        [ 1  0  0 | -1 ]
        [ 0  1  0 | -2 ]
        [ 0  0  1 | -6 ]
        

From this RREF, we can directly read the solution: x = -1, y = -2, and z = -6.

Leave a Reply

Your email address will not be published. Required fields are marked *