Resistance Coefficient K Calculation Spreadsheet Template

Resistance Coefficient (k) Calculator

The resistance coefficient (k) is a dimensionless quantity used in fluid dynamics to characterize the energy loss due to friction and form drag in a fluid flow system, such as pipes or channels. It helps engineers predict pressure drop and pumping power requirements. This calculator helps determine 'k' based on empirical or theoretical models, often related to flow velocity, pipe diameter, and fluid properties.

Resistance Coefficient (k):

.calculator-container { font-family: sans-serif; border: 1px solid #ccc; padding: 20px; border-radius: 8px; max-width: 500px; margin: 20px auto; background-color: #f9f9f9; } .calculator-form { margin-bottom: 20px; } .form-group { margin-bottom: 15px; } .form-group label { display: block; margin-bottom: 5px; font-weight: bold; } .form-group input { width: calc(100% – 22px); padding: 10px; border: 1px solid #ccc; border-radius: 4px; } .calculator-result { background-color: #e9e9e9; padding: 15px; border-radius: 4px; text-align: center; } .calculator-result h3 { margin-top: 0; color: #333; } .calculator-result p { font-size: 1.2em; color: #007bff; font-weight: bold; } button { background-color: #007bff; color: white; padding: 10px 15px; border: none; border-radius: 4px; cursor: pointer; font-size: 1em; width: 100%; } button:hover { background-color: #0056b3; } function calculateK() { var flowVelocity = parseFloat(document.getElementById("flowVelocity").value); var pipeDiameter = parseFloat(document.getElementById("pipeDiameter").value); var density = parseFloat(document.getElementById("density").value); var pressureDrop = parseFloat(document.getElementById("pressureDrop").value); var kValueElement = document.getElementById("kValue"); if (isNaN(flowVelocity) || isNaN(pipeDiameter) || isNaN(density) || isNaN(pressureDrop)) { kValueElement.textContent = "Please enter valid numbers for all fields."; return; } if (flowVelocity <= 0 || pipeDiameter <= 0 || density <= 0 || pressureDrop <= 0) { kValueElement.textContent = "All values must be positive."; return; } // The Darcy-Weisbach equation relates pressure drop to friction factor (f) and head loss. // k is often related to minor losses or a specific coefficient. // A common approach to calculate k for certain components (like valves or bends) // relates it to the pressure drop caused by that component. // Here, we'll assume a simplified relationship where k is directly proportional to // pressure drop, fluid density, and inversely proportional to dynamic pressure. // This is a simplified model and real-world k-values are often derived from experiments // or more complex formulas specific to the component. // Dynamic Pressure = 0.5 * density * velocity^2 var dynamicPressure = 0.5 * density * Math.pow(flowVelocity, 2); // Resistance Coefficient (k) = Pressure Drop / Dynamic Pressure var k = pressureDrop / dynamicPressure; kValueElement.textContent = k.toFixed(4); // Display k with 4 decimal places }

Leave a Reply

Your email address will not be published. Required fields are marked *