Three Phase Load Calculation

.three-phase-calc-container { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; max-width: 800px; margin: 20px auto; padding: 25px; border: 1px solid #e1e1e1; border-radius: 8px; background-color: #ffffff; box-shadow: 0 4px 6px rgba(0,0,0,0.05); color: #333; } .three-phase-calc-header { text-align: center; margin-bottom: 25px; } .three-phase-calc-header h2 { color: #2c3e50; margin-bottom: 10px; } .three-phase-calc-row { display: flex; flex-wrap: wrap; gap: 20px; margin-bottom: 15px; } .three-phase-calc-field { flex: 1; min-width: 200px; } .three-phase-calc-field label { display: block; font-weight: 600; margin-bottom: 8px; font-size: 14px; } .three-phase-calc-field input, .three-phase-calc-field select { width: 100%; padding: 10px; border: 1px solid #ccc; border-radius: 4px; box-sizing: border-box; font-size: 16px; } .three-phase-calc-button { background-color: #2980b9; color: white; padding: 12px 24px; border: none; border-radius: 4px; cursor: pointer; font-size: 16px; font-weight: 600; width: 100%; margin-top: 10px; transition: background-color 0.2s; } .three-phase-calc-button:hover { background-color: #2471a3; } .three-phase-calc-results { margin-top: 25px; padding: 20px; background-color: #f8f9fa; border-radius: 6px; border-left: 5px solid #2980b9; display: none; } .three-phase-calc-results h3 { margin-top: 0; font-size: 18px; color: #2c3e50; } .three-phase-result-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 15px; } .three-phase-result-item { font-size: 15px; } .three-phase-result-value { font-weight: bold; color: #2980b9; display: block; font-size: 18px; } .three-phase-article { margin-top: 40px; line-height: 1.6; color: #444; } .three-phase-article h2 { color: #2c3e50; border-bottom: 2px solid #eee; padding-bottom: 10px; } .three-phase-article h3 { color: #34495e; margin-top: 25px; } .formula-box { background: #f1f1f1; padding: 15px; border-radius: 4px; font-family: "Courier New", Courier, monospace; margin: 15px 0; text-align: center; }

Three Phase Electrical Load Calculator

Calculate Active Power (kW), Apparent Power (kVA), and Reactive Power (kVAR) for three-phase systems.

Line-to-Line (VL-L) Line-to-Neutral (VL-N)

Calculation Results

Real Power: 0 kW
Apparent Power: 0 kVA
Reactive Power: 0 kVAR
Total Power: 0 Watts

Understanding Three-Phase Load Calculations

Three-phase electrical systems are the standard for power distribution and industrial equipment worldwide. Calculating the load accurately is critical for sizing circuit breakers, conductors, and transformers correctly.

The Three-Phase Power Formula

In a balanced three-phase system, the total power is not simply voltage multiplied by current. We must account for the square root of three (approximately 1.732) because the phases are offset by 120 degrees.

P (Watts) = √3 × VL-L × I × PF
  • VL-L: Line-to-Line Voltage.
  • I: Current in Amperes (per phase).
  • PF: Power Factor (the ratio of real power to apparent power).
  • √3: Constant for 3-phase systems (approx. 1.732).

Real, Apparent, and Reactive Power

When dealing with AC (Alternating Current) three-phase loads, there are three types of power to consider:

  1. Real Power (kW): The actual work being performed (heat, motion).
  2. Apparent Power (kVA): The total power flowing through the circuit. This is what you size your wires and transformers for.
  3. Reactive Power (kVAR): Power that bounces back and forth between the source and load (stored in magnetic or electric fields).

Practical Example

Imagine an industrial motor running on a 480V three-phase supply. If the motor draws 50 Amps and has a power factor of 0.85, the calculation would be:

Calculation: 1.732 × 480V × 50A × 0.85 = 35,332 Watts or 35.33 kW.

The apparent power (kVA) would be: 1.732 × 480V × 50A = 41,568 VA or 41.57 kVA.

Why the Power Factor Matters

A low power factor means you are drawing more current than necessary to do the same amount of work. This leads to inefficiency and potentially higher utility costs. Most industrial facilities aim for a power factor above 0.90 or 0.95.

function calculateThreePhaseLoad() { var vType = document.getElementById("voltage_type").value; var v = parseFloat(document.getElementById("voltage").value); var i = parseFloat(document.getElementById("current").value); var pf = parseFloat(document.getElementById("pf").value); var resultsBox = document.getElementById("results_box"); if (isNaN(v) || isNaN(i) || isNaN(pf) || v <= 0 || i <= 0 || pf 1) { alert("Power Factor cannot be greater than 1.0."); return; } var lineVoltage = v; // If user provided Line-to-Neutral, convert to Line-to-Line if (vType === "phase") { lineVoltage = v * Math.sqrt(3); } // Formulas: // Apparent Power S (VA) = sqrt(3) * V_L-L * I // Real Power P (W) = S * PF // Reactive Power Q (VAR) = sqrt(S^2 – P^2) var sqrt3 = Math.sqrt(3); var apparentPowerVA = sqrt3 * lineVoltage * i; var realPowerW = apparentPowerVA * pf; var reactivePowerVAR = Math.sqrt(Math.pow(apparentPowerVA, 2) – Math.pow(realPowerW, 2)); // Convert to k-units var realPowerKW = realPowerW / 1000; var apparentPowerKVA = apparentPowerVA / 1000; var reactivePowerKVAR = reactivePowerVAR / 1000; // Update Display document.getElementById("real_power_kw").innerText = realPowerKW.toFixed(2) + " kW"; document.getElementById("apparent_power_kva").innerText = apparentPowerKVA.toFixed(2) + " kVA"; document.getElementById("reactive_power_kvar").innerText = reactivePowerKVAR.toFixed(2) + " kVAR"; document.getElementById("total_power_watts").innerText = Math.round(realPowerW).toLocaleString() + " Watts"; resultsBox.style.display = "block"; }

Leave a Reply

Your email address will not be published. Required fields are marked *